
The Design, Implementation, and Analysis
of an Automated Logic Synthesis and

Module Selection System

Gary W. Leive

January 1981

Department of Electrical Engineering·

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Submitted to Carnegie-Mellon University in partial fulfillment

of the requirements for the degree of Doctor of Philosophy.

Copyright © 1981 G.W.Leive

This research was supported by National Science Foundation Grant No. ENG-78-25755.

Table of Contents

Acknowledgements 1

Abstract 3

1. Introduction 5

1.1 Motivation 5

1.2 Background 6

1.2.1 Prior Work 6

1.2.2 Related Work 7

1.2.3 Different Work 10

1.2.3.1 The CIT Silicon Compiler 10

1.2.3.2 The MIT Design Procedure System 11

1.2.3.3 The MIMOLA Design System 12

1.3 The Problem 12

1.4 Approach 13

1.5 Overview 14

2. Transformations for Logic Synthesis 17

2.1 Introduction 17

2.2 Approach to Structure Transformation 18

2.3 Data Part Representation 18

2.3.1 Variable Carriers (VC) 21

2.3.2 Path Carriers (PC) 22

2.3.3 Variable Operators (VO) 23

2.3.4 Path Operators (PO) 24

2.4 Control Part Representation 25

2.4.1 VC Micro-Operations 26

2.4.2 VO Micro-Operations 26

2.5 Partitioning Transformations 27

2.5.1 Bit Boundary Partitioning 27

2.5.2 Input Boundary Partitioning 30

2.6 Combining Transformations 31

2.6.1 Vertical Join Transformations 31

2.6.2 Horizontal Join Transformations 35

2.7 Equivalence Transformations 35

2.7.1 Synthesis Equivalence Language 37

2.7.2 Template Generation 40

2.8 Merged Operation Transformations 41

2.9 Inversion 42

2.10 Summary 42

ii

3. Automating Logic Synthesis 43

3.1 Overview of the Automated LSMS Process 43

3.1.1 Phase I - Unbind/Invert 44

3.1.2 Phase II - Candidate/Window 44

3.1.3 Phase III - Evaluate/Transform/Bind 45

3.2 The Module Database 45

3.3 Implementation of a Surrogate Designer 46

3.3.1 Evaluation 47

3.3.1.1 Constraints 47

3.3.1.2 Constraint Evaluation 48

3.3.2 Synthesis 51

3.3.2.1 Synthesis Control 51

3.3.2.2 Template Tree Evaluation 52

3.3.2.3 Node Installation 53

3.3.2.4 Node Linkage 53

3.3.2.5 Micro-Operation Synthesis 54

3.3.3 Automatic Transformation 55

3.3.3.1 Equivalence Synthesis 55

3.3.3.2 Partitioning and Combining Transformations 55

3.3.3.3 Merged Operations 56

3.3.3.4 Binding 56

3.4 Conclusions 56

4. Validation of Transformations 57

4.1 Introduction 57

4.2 Design of the Experiment 58

4.2.1 Background 58

4.3 Description of the Experiment 59

4.4 Instructions to Designers 62

4.4.1 Data Part Cost 62

4.4.2 Control Part Delay 63

4.4.3 Design Constraints 64

4.4.4 Special Considerations 65

4.5 Analysis of Experiments 65

4.5.1 Data Presentations 65

4.5.2 Initial Parameters 67

4.6 Change Mechanism Using TTL Modules 67

4.6.1 Data Analysis 68

4.6.2 Designer Transformations 72

4.7 Small PDP-8 Using Sandia Cells 73

4.7.1 Data Analysis 73

4.7.2 Designer Transformations 78

4.8 Change Mech.anism Using Sandia Cells 79

4.9 Small PDP-8 Using TTL Modules 81

4.10 Conclusions 82

5. Design Space Exploration 85

5.1 Introduction 85

5.2 The Descriptions 86

5.3 Module Sets 87

5.3.1 TTL Module Set 87

5.3.2 Sandia CMOS Cell Module Set 90

iii

504 Design Space Plots
5.5 Design Space Shape Analysis

5.5.1 Correlation Comparisons
5.5.2 Maximum to Minimum Ratios
5.5.3 Predictor Development
5.504 Numeric Predictors

5.6 Predicting a Fourth Design
5.6.1 The Best Predictors

5.7 Conclusions

6. Results and Conclusions

6.1 Results
6.2 Contributions
6.3 Future Research

Appendices

Appendix A. The Module Database System

A.1 Module Database
A.2 DataBook Data Definition
A.3 Database Editor

AA Database Access

Appendix B. Synthesis Equivalence Language

B.1 Syntax
B.2 Examples

Appendix C. ISP Descriptions

C.1 Change Mechanism ISP
C.2 Truncated PDP-8 ISP
C.3 Full PDP-8 ISP

CA Mark-1 ISP

Appendix D. Run Examples

0.1 Synthesis Trace
0.2 Synthesis Summary
0.3 Module Utilization Table

Appendix E. Module Database Entries

92

100

100

103

105

108

112

114

118

119

119

120

121

123

125

125

130

133

134

139

139

142

143

143

148

152

158

159

159

165

166

167

iv

v

List of Figu res

Figu re 1-1: The CMU-DA System
Figu re 2-1: Basic Path Graph Nodes (a)
Figu re 2-2: Basic Path Graph Nodes (b)
Figu re 2-3: Bit Boundary Partitioning
Figu re 2-4: Input Boundary Partitioning
Figu re 2-5: .Combining AND Nodes
Figu re 4-1: Design Experiment Assignment
Figu re 4-2: Actual Experimental Assignments
Figu re 5-1: TTL Module Set Space Projections
Figu re 5-2: Sandia Cell Module Set Space Projections
Figu re 5-3: Change Mechanism/TTL Design Space Projections
Figu re 5-4: Small PDP-8/TTL Design Space Projections
Figure 5-5: Full PDP-8/TTL Design Space Projections
Figu re 5-6: Change Mechanism/Cell Design Space Projections
Figu re 5-7: Small PDP-8/Cell Design Space Projections
Figu re 5-8: Full PDP-8/Cell Design Space Projections
Figu re 5-9: Mark-1 /TTL Design Space and Predictions
Figu re 5-10: Mark-1/Cell Design Space and Predictions
Figu re A -1: Module Database Organization and Access
Figu' re C-1: Change Mechanism Path Graph (1/2)
Figu re C-2: Change Mechanism Path Graph (2/2)
Fi!:ju re C-3: Small PDP-8 Path Graph (1/2)
Figu re C-4: Small PDP-8 Path Graph (2/2)

8

19

20

29

32

34

60

60

89

91

94

95

96

97

98

99

115

116

126

146

147

150 .

151

vi

vii

List of Tables

Ta ble 4-1: Change/TTL Raw Data 68

Table 4-2: Change/TTL - Consistent Data 69

Table 4-3: Change/TTL - SYNNER Accounting Basis 70

Table 4-4: Change/TTL - Statistics 71

Table 4-5: Small PDP-8/Sandia Cells - Raw Data 73

Table 4-6: Small PDP-8/Sandia Cells - Consistent Data 74

Ta ble 4· 7: Small PDP-8/Sandia Cells - Synner Accounting Basis 75

Ta ble 4-8: Small PDP-8/Sandia Cells - Statistics/Designers 1, 2, 3, and 4 76

Table 4-9: Small PDP-8/Sandia Cells - Statistics/Designers 1,2, and 4 77

Table 4-10: Small PDP-8/Sandia Cells - Statistics/SYNNER - Without Adder 78

Ta ble 4-11: Change Mechanism/Sandia Cells - SYNNER Accounting Basis 80

Table 4·12: Small PDP-8/TTL Modules - SYNNER Accounting Basis 81

Ta ble 5-1: TTL Designs - Correlation (R 2) Factors 101

Table 5-2: Cell Designs - Correlation (R 2) Factors 101

Table 5-3: TTL Designs - Maximum/Minimum Ratios (MMR) 103

Table 5·4: Cell Designs - Maximum/Minimum Ratios (MMR) 104

Table 5-5: Designs Normalizing Factors 108

Table 5-6: TTL Designs - Measured Mean Values 109

Table 5-7: TTL Des!gns - Mean Predictors (X =) 109
 n
Table 5-8: Cell Designs - Mean Measured Values 110
Table 5-9: CeIIDesigns-MeanPredictors(X =) 110

n
Table 5-10: TTL Designs- Predictors 111
Table5-11: CellDesigns-Predictors 111
Table 5-12: Mark-1 Normalizing Factors 112
Table5-13: Mark-1-TTLPredictions 113
Table 5·14: Mark-1-Cell Predictions 113
Table 5-15: TTL Designs - Final Predictors 114
Ta ble 5-16: Cell Designs - Final Predictors 117

1

Acknowledgements

First and foremost, my profound thanks go to my wife Cora who made this effort possible,

and to my son Eric whose act of birth early in this effort and cheerful presence since have

made everything seem more worthwhile.

My sincere thanks go to my adviser, Dr. Donald Thomas whose patience, prodding, and

ideas have gotten me to this point. His determined belief in an experimental approach was the

seed that grew into the design experiment and the design space studies. Dr. Mario Barbacci

provided numerous suggestions that improved the software design. His support in the

development of the Synthesis Equivalence Language was particularly helpful. Dr. Daniel

Siewiorek, and Dr. Charles Eastman have, through their diversified interests, significantly

contributed to bringing together a thesis from work that ranged from design space exploration

to databasing issues. Dr. Alice Parker provided insight on the relationship of the LSMS step to

the D/M and Control allocation steps of CMU-DA.

A special thanks is due to my colleagues, Lou Hafer, Richard Cloutier, and Andy Nagle for

implementations of the predecessor and successor steps of CMU-DA. Without Lou's

Data/Memory Allocator there would not have been any functional level designs to process.

Without Richard and Andy's Control Allocator the correctness of my output would have been

far more suspect.

A special thanks is also due the "volunteer" designers who spent perfectly good drinking

time helping me determine that this research had actually accomplished something.

My appreciation goes to the many members of the CMU-DA effort who have provided ideas

and whose probing questions have made me address and solve problems it would have been

all too easy to ignore.

Finally, appreciation must be expressed to Dr. Hans Berliner for providing the world's finest

automated backgammon opponent which I found to be, the ideal diversion at moments of high

"research stress".

2

3

Abstract

The research reported in this thesis is an excursion into automation of the Logic Synthesis

and Module Selection (LSMS) step of the CMU-DA system. A number of transformations that

are necessary to manipulate the structure of a design (while keeping its behavior constant)

are identified. A surrogate designer, with the judgment to apply transformations, has been

implemented and is described.

The automated LSMS system was calibrated against two designs that were each hand

processed with two different module sets: TTL modules and the Sandia Laboratories Standard

CMOS Cells for LSI implementation. This calibration indicates that the automated system

produces designs almost indistinguishable from those expected in a population of relatively

good human designers. The calibration occurred toward the optimal end of a design space

(minimum cost, delay, and power). The automated system was used to generate many

different points throughout design spaces for three descriptions (each with the two different

module sets). These design space projections are interesting since they imply a parabolic

bound rather than the expected hyperbolic bound.

The design space data led to development of a set of predictors which can estimate the

bounds of a design space from information that is available before the LSMS level. The

estimates are useful for either hand design methods or higher levels of a design automation

system. Use of the predictors is demonstrated by estimating the bounds of a design space for

a fourth description. Plots of the measured design space and the estimates indicate that a

good match was achieved.

4

5

Chapter 1

Int rod uction

"Stay at home in your mind. Don't recite other people's opinions. I hate
quotations. Tell me what you know."

-- Ralph Waldo Emerson (1803 - 1877)

1.1 Motivation

During the past decade semiconductors have grown from SSI/MSI devices to the sixteen bit

microprocessors available today. The focus of digital design has shifted from the board level

to the integrated device level. However, the problems of dealing with a large design remain

approximately the same as they were ten years ago. Initially, the desired behavior must be

described. A behavioral description must be successively translated to the register transfer

level, the functional logic level, the structural (or logic gate) level, and the circuit level. A

design must be partitioned, physical positions must be selected for the devices, and the

devices must be interconnected. Most of the progress in Computer Aided Design (CAD) to

date has addressed the issues near the partitioning, placement, and routing end of the design

hierarchy.

Today we stand at the threshold of the VLSI era. The continually increasing size of designs

presents an almost intractable problem for unaided translation through the various design

levels. However, the demand for VLSI devices requires that the design process be shortened

to more quickly produce implementations that exhibit a specified behavior. These conflicting

realities require that design aids address issues further up the design hierarchy than the

current tools are able to handle.

The ultimate goal of design automation is to fully automate the translation steps starting

6

with a specification for a design and ending with a full set of production documents for

implementation. Carnegie-Mellon University has been exploring a series of these translation

steps with the goal of understanding the problems at each level well enough to formalize and

implement the design tools. This thesis addresses the portion of the Carnegie-Mellon

University Design Automation (CMU-DA) system concerned with the translation from the

functional logic design level to the structural design level. The functional logic design level is

represented by a data part graph (comprised of interconnected nodes representing registers,

multiplexors, and ISPS1 operators), plus control sequencing information. The nodes of the

data part graph do not express or imply any information about devices that could be used for

implementation. The structural logic design level is represented by a data part graph

(comprised of interconnected nodes representing registers, multiplexors, and module set

level operators) whose structure has been modified to allow implementation with devices from

a specified module set, plus control sequencing information reflecting the structure imposed

by the module set level operators.

1.2 Backg round

This research is a result of two projects at Carnegie-Mellon University: the EXPL project

[Barbacci 73] which was the original CMU effort in design automation, and its direct

descendant, the CMU-DA project [Siewiorek 76].

1.2.1 PriorWork

The EXPL system used a behavioral description as the design specification and a module

set for implementation of the design. A design space was defined by specifying cost and

speed attributes for the devices in the module set. The design space was first pruned with

heuristics then explored (to the limits of EXPL's transformations) by altering the structure of

the design. The design space parameters were changed by manipulating the serial and

parallel relationships of the data paths. The EXPL system used the Digital Equipment

Corporation (DEC) PDP-16 Register Transfer Modules (RTMs) as the initial module set and

was later extended to use Macromodules [Clark 67].

1Supported by the Instruction Set Processor Specifications (ISPS) language [Barbacci 79].

7

1.2.2 Related Work

The CMU-DA project is a direct descendant of EXPL. It was conceived to explore and

understand the manipulation of behavioral descriptions with the ultimate goal of minimizing

the impact of changing technology. The module sets used by EXPL were convenient because

they were well structured to provide a complete range of functionality and they both had

consistent control protocols. Unfortunately, these module sets had almost no applicability

outside of the educational environment. It was also quite difficult to change module sets

because EXPL contained all module information within the program. In order to insure

technology relevance it was necessary to devise a design automation system that would be far

less sensitive to changes in the module sets than EXPL proved to be.

Two of the key concepts embodied in the organization of CMLI-DA have been used to

minimize the impact of changing hardware technology:

• Design decisions requiring	 knowledge of the hardware used for implementation
are delayed as long as possible.

•	 Module sets used to provide the hardware dependent information are in
databases that may easily be extended and exchanged.

The functional completeness and well structured control protocols of RTMs and

Macromodules would have to be abandoned for the evolutionary module sets that are used in

real designs. In this thesis, a module set is rather liberally interpreted to be any accumulation

of digital devices that are designed to be directly interconnected without additional interfaces.

Figure 1-1 shows the organization of the CMU-DA system. The behavioral description of a

design is written in the Instruction Set Processor Specification (ISPS) language [Barbacci 79]

and translated into a parse tree (named the Global Data Base) form. The ISPS translator is

independent of CMU-DA and is designed to provide an output that can be used for several

purposes such as behavioral simulation and Design Automation [Barbacci 81].

The initial step of CMU-DA performs global optimization on the design. These operations

were originally conceived by [Snow 78] and are currently being extended by [McFarland 79].

The global optimizations explore the cost/speed tradeoffs between the control and data parts

of a design. The Global Data Base (GOB) form used as input is translated into a data structure

called a Value Trace (VT). The VT form is particularly well suited to optimizations such as

code motion, constant folding, dead code elimination, and redundant subexpression

elimination because the nodes of the VT represent values rather than the carriers (registers,

memories, or buses) in which values reside.

8

CMU-DA OPERATIONAL OVERVIEW A.
A. DESCRI PTION PROCESSING
B. DESIGN PROCESSING
C. MODULE DATABASE SYSTEM

B.

GLOBAL

DATABASE

Parse Tree

1- ~B~ ---,

LOPTIMIZATION I-1 Value Trace

- - ---,
I DESIGN STYLE

L SELECTION . I
T\

I~TA/MEMORy-1
DATA/MEMORY

ALLOCATOR ALLOCATOR I
(BUS)

L 7
ACCESS
SCHEMA

LSMS (DDF)

System.

(SYNNER)

Bound Path Graph

(Structural Level)

MODULE SET

DATABASE

Solid Lines Show Operational
Dashed Lines Show

Bound Path Graph Parts Being Developed.
Data and Control ""r--~- -I

Interiace to
I Layout Systems
I~ J!::!..P2QL

Figure 1-1: The CMU-DA System

9

A globally optimized design is passed to the Design Style Selection· step [Thomas

81, Lawson 78]. Design Style Selection classifies a design into a category that will allow the

best implementation. Design Styles that have been identified are:

• Distributed (random logic)

• Bus

• Microprocessors

• Bit-Slice Microprocessor

• Pipeline Processing

The classification is done by making measureme·nts on a design (number of registers, number

of operators, estimate of maximum delay path, etc.) and evaluating the measurements against

summary information from module sets that are candidates for implementing the design in

each of the styles.

Once a design style has been identified, a design is routed to an appropriate Data/Memory

Allocator. A Data/Memory Allocator translates a design from the abstract behavioral form to a

functional logic level design called a path graph. Nodes of a path graph describe the

variables, operators, switches, and data links. The data flow is described by directed edges.

A path graph may describe any degree of complexity and may be non-planar, cyclic, and

disconnected. Information provided with a path graph defines the control sequence required

to activate the data paths. Although Data/Memory allocators for each design style are

planned, the only operational one at this time is the Distributed Design Style allocator [Hafer

78].

To this point, a design has been processed without requiring information about the specific

hardware that would be used to implement it. This means that a path graph remains a general

enough form to be processed into implementations as diverse as board level (using TTL

packages) or integrated circuits (using cells) by the remaining steps of CMU-DA. The Logic

Synthesis and Module Selection (LSMS) step of CMU-DA performs the translation of a path

graph into a.design with the modules selected for each node of a design's data part. The

LSMS step of CMU-DA is the topic of this thesis and a detailed discussion of the.

transformations will be deferred to the next chapter.

After the data part of a design is synthesized and modules have been selected for

implementation, enough information is available to design a controller. This is done by a

Control Allocator [Cloutier 80, Nagle 80]. The Control Allocator synthesizes a ROM based

microprogrammed sequencer to activate the data part modules.

10

The result of processing by CMU-DA is a design in the form of a graph that contains

completely specified data and control parts. Additional research [Parker 79, Kim 79] is . . .
investigating the problems of interfacing the output of CMU-DA to layout and routing systems

such as the RCAIARMY MP2D program.

1.2.3 Different Work

There are several approaches to Design Automation under active study by various

universities and organizations. Each approach has merit and will add to the overall

understanding of design automation problems. It is probable that future systems will use a

mixture of the best results from various investigations in order to develop a compre.hensive

design automation tool.

Since CMU-DA represents just one of several partitions of design automation research,

three of the alternative viewpoints will be summarized in order to show that this work is unique

and that there is a need for several simultaneous investigations. The three design automation

systems chosen to represent the range of current investigations are the California Institute of

Technology Silicon Compiler, the Massachusetts Institute of Technology Design Procedure

System, and the University of Kiel (West Germany) MIMOLA design system.

1.2.3.1 The CIT Silicon Compiler

The California Institute of Technology Silicon Compiler [Johannsen 79]is possibly the most

highly publicized design automation research effort. The stated objective is to "produce an

entire LSI mask set from a single page, high level description of the integrated circuit." The

high level description appears to consist of a very structured expectation of the resulting chip.

One section of the description defines the microcode word width and requires an

identification of the fields within the word. A second section defines the data path word width

and the device interconnection paths (required to be buses). The final section defines the

elements in the data part of the design (specific devices are assigned with the understanding

that the silicon compiler will handle placement and manipulation of the specific geometries).

There are several points in the silicon compiler philosophy that contrast with the CMU-DA

philosophy. Probably the most apparent contrast is the disparity between the ideas of what

constitutes a high level description. The ISPS language used with CMU-DA describes the

desired behavior of a design as a set of register transfer statements. This approach does not

impose any preconception about either the architecture or the technology used to implement

the design. The silicon compiler expects that the data part will be in a well defined "core"

11

area of the chip, the communication between core elements will be by bus, and the control

part will go in a well defined decoder on a specific area of the chip. CMU-DA defers decisions

about the control structure (including microcode word width and field definitions) until data

part synthesis is completed.

The silicon compiler research appears to overlap the lower ends of CMU-DA (particularly

control allocation which, while more flexible, performs a similar function by producing

microcode). The silicon compiler addresses the lower level issues of partitioning, layout, and

interconnection while the CMU-DA approach is to manipulate a design through higher levels

and interface the system output with other systems to perform partitioning, layout, and

interconnection.

1.2.3.2 The MIT Design Procedure System

The Massachusetts Institute of Technology Artificial Intelligence Laboratory design

automation investigation [Sussman 79] is addressing methods for aiding the development of

very large designs. To this end, they have envisioned a system that can act as a designer's

assistant. The system would take care of the many accounting details involved in developing

a large design. Multilevel description consistency would be maintained, and the system would

be able to advise a designer on the consequences of any proposed modifications.

Formalization of the design process is a major subgoal of this study. To that end there is an

effort to develop a performance theory of engineering design. This work is still in the very

early stages, but a demonstration of the possibilities has been performed by constructing

some specially tailored software to produce a LISP interpreter on a single LSI chip. The chip

has actually been fabricated from the output of this demonstration system.

The MIT effort differs from CMLI-DA in both concept and implementation. CMU-DA has the

less ambitious goals of understanding the problems at several hierarchical levels of the digital

design process and implementing software tools to deal with those problems. The MIT goal is

to discover a formal theory of the entire engineering design process by evolving tools that

both aid and monitor designer performance. The initial MIT efforts have been targeted at a

level that overlaps the low end of CMU-DA and proceeds down to the actual chip layout

issues. It remains to be seen just what results are produced by the MIT endeavor.

12

1.2.3.3 The MIMOLA Design System

The MIMOLA Design System [Zimmermann 79, Marwedel 79] appears to have more in

common with CMU-DA than do the Software Compiler or the Design Procedure System. The

data part and control part of a design are described at a behavioral level in the MIMOLA

language. The system processes the description through several steps including syntax

analysis, compilation, and allocation. A statistical analyzer provides information to a designer

who must decide if (and how) the data part must be constrained in .order to meet cost

objectives. A restricted design may be reprocessed by MIMOLA. This iterative procedure may

continue (with the designer performing an active role) until an optimum is reached.

MIMOLA does not attempt to deal with either the high level global optimizations or the data

part synthesis that are integral parts of CMU-DA. It is primarily oriented toward automated

operations on the control part of a design. The first pass through the system produces a

design with the minimum number of control states. This approach often generates a very

expensive hardware implementation. Designer restrictions to the data part may then be

reprocessed to trade off control steps (and delay) for data part cost. MIMOLA does not

appear to address any of the issues of this thesis. It assumes that the data part nodes can be

implemented directly from available hardware modules. In cases where that is not true, the

designer must intervene to design "super modules" that satisfy the description requirements.

1.3 The Problem

The functional logic level of a design is the starting point for this work. This level is

represented as a path graph produced by a distributed data/memory allocator. No

information about any physical hardware is expressed or implied by a design at this level. The

operators reflect functions that are supported at the behavioral description (ISP) level.

Functional logic operators may include any of the arithmetic modes (two's complement, one's

complement, sign-magnitude, or unsigned) supported by ISP.

The goal of the research was to develop a design aid that solved the problem of translating

the data part of a design from a functional logic level to a structural logic level with associated

hardware information, and to use this design aid to investigate and better understand the

design space of the structural logic level.

The objective of the translation to a structural logic level is the structural modification of a

design to reflect correct implementation of all nodes with modules from a module set. The

problem consists of identifying a set of transformations capable of operating on all path graph

13

node types. A methodology must then be devised to apply the transformations in an efficient

manner.

Investigation of the design space associated with the structural logic level required that the

transformations and their application be implemented as a programmed software system. It is

possible to postulate an absolute design space that would be bound by the limits to which the

parameters of the design could be changed. At this point in time, there is no known method to

predict the absolute bounds. However, a transformation design space can be mapped. Once

the software system existed, it was possible to vary the designs, the module sets, and the

designer constraints to produce points in a design space. A design space may be drawn in

one or more dimensions if changes in parameters (cost, delay, and power in this thesis) result

from processing designs with different constraints and different sets of transformations.

This thesis proposes and implements a set of structural transformations. The ability of the

transformations to produce a reasonable design space when compared to human designers is

demonstrated, and those transformations are used to produce design spaces for several

designs.

1.4 Approach

An attempt will be made in this section to state the underlying philosophies that guided

development of the Logic Synthesis and Module Selection (LSMS) system implementation

which is called SYNNER (SYNthesizing desigNER).

Initially ([Leive 77]) it was proposed to define a methodology for producing optimal designs

at the LSMS level. The implementation envisioned at that time would have been fully

automated. A functional level design would have entered the system and a structural level

design with modules selected for each node would have been produced by the system.

However, as the early software evolved, it became apparent that it was extremely useful to be

able to apply transformations manually through keyboard interaction with the system. This

observation led to the concepfof a design environment where automatic processes would be

a part of a larger capability to manipulate designs. Each of the capabilities available to the

automatic LSMS operation is also available to the designer for manual application. In

addition, a designer can control which transformations are applied during automatic

processing. The designer has the tools to override decisions made by the automatic

processes and to change module selections made either automatically or manually.

Every effort was made to allow easy extensions to both module information and synthesis

14

transformations. A designer should have the freedom and the capability to extend the

information and the repertoire of algorithms that a design automation tool uses to make

decisions. The extension capability should be external to the software. Programs should, in

other words, be programmable. This principle was not fully achieved in the LSMS system.

Instead, a reasonable compromise was achieved that reduced the number of hard coded

transformations to a few that operate on fairly general aspects of the design structures. All

other constructions required for LSMS are covered by the externally programmable capability

that allows synthesis algorithms to be extended.

Transformations were defined to be as general as possible. At the LSMS design level,

transformations used by designers often appear to be derived from a "bag of tricks". Rather

than attempt to duplicate a special "bag of tricks" in software, the problem was viewed as one

on which structure could be placed. A small number of very general transformations and a

generalized synthesis procedure are adequate to produce good (not optimal) designs. There

are special cases that are not efficiently dealt with, but it appears that structure has been

place on the central issues of this level of design.

The design environment was built in a bottom up, evolutionary manner. Structure

manipulation primitives were defined first. The primitive operations were then integrated into

transformations. A controlling process was developed to act as a surrogate designer for

automatic processing. The controlling process contains the capability to apply appropriate

transformations, synthesize structures, and select the modules to implement the nodes of a

design. This surrogate designer can apply the same structure manipulation transformations

that are available to a human designer using the system in a manual mode.

The result of this approach is a design aid which may be used to further investigate the

optimal automation of this level of design. The existing system can be extended somewhat

through its external programming capability. Future research with this system could lead to

the modification or redefinition of the surrogate designer.

1 .5 Ove rview

The remainder of the thesis is organized as a progression starting with the details of the

transformations and ending with the use of the system for design space explorations. Within

that progression, there are two distinct groupings:

• Chapters 2 and 3 discuss the	 concepts involved in developing SYNNER as a
software tool for use at the LSMS design level.

15

• Chapters 4 and 5 discuss calibration and applications of this tool. .

Chapter 2 identifies and explains the automation of the basic structural transformations and

the synthesis process. The transformations provide a raw capability for manipulating the

structure of a design represented as a path graph. They are postulated to be a reasonable

working set of transformations that are capable of handling most design situations. However,

justification of that assumption will not be offered until Chapter 4. Chapter 3 describes the

operation and implementation of the surrogate designer that controls automatic processing in

SYNNER. The surrogate designer exercises the judgment necessary to apply the

transformations much as a human designer would if the transformations were applied

manually.

Chapter 4 presents the results of an experiment involving designers who manually

processed descriptions at the LSMS level. Two descriptions (a change mechanism for use in

vending machines and a truncated description of the PDP-8 minicomputer) and two module

sets (TTL and the Sandia CMOS Cells [Sandia 78]) were processed by the designers.. By

comparing their results to the automated results for the same descriptions, it was possible to

verify that SYNNER performs almost as well as a member of the human designer population.

The experiment also provided information on transformations that designers actually use.

The designers produced a few points near the optimal end of a design space. Chapter 5

builds from those few points by using the LSMS system to explore a much wider design space.

Design space projections are plotted using data from processing three designs 64 times (each

with different constraints) using two module sets for each design. The design space

explorations provide a quantity of data that is reduced in order to arrive at a set of predictors

that may be used to estimate the bounds of cost, delay, and power parameters for other

designs..

Chapter 6 summarizes the results and identifies some areas for future research at the LSMS

design level.

16

17

Chapter 2
Transformations for Logic Synthesis

"The art of progress is to preserve order amid change and to preserve change
amid order",

-- Alfred North Whitehead

2.1 Introduction

Designs entering the LSMS step of CMU-DA are represented at a functional level which may

contain operations that are not directly realizable from devices in a module set. In cases

where there is not a match between members of the module set and operations in a design,

some methodology must be applied to reduce the difference until the available modules can

be used to implement the description.

The methodology used to implement the LSMS step of CMU-DA consists of transforming the

structure of the functional level design until the resulting nodes only require operations that

exist in a particular module set. The transformations used in the LSMS will be discussed in

this chapter. They provide a capability for structural modification that may be used as a CAD

tool with a designer deciding how they should be applied or a surrogate designer could be

devised to automatically decide when and how to apply the transformations. The surrogate

designer implemented in SYNNER will be discussed in Chapter 3.

18

2.2 Approach to Structure Transformation

In the early stages of this research consideration was given to transforming both the path

graph and the module set. The path graph was to be modified such that the difference

between the existing structure and the modules available to implement functions was

reduced. The module set would then be transformed by synthesizing a construct (a super

module) that would again reduce the difference between the module set functions and the

path graph structure. At some point the synthesized module construct' and the path graph

structure were supposed to converge. This approach was rejected primarily because

convergence would be difficult to guarantee. The problem of devising meaningful measures

of the difference between the graph structure and module constructs also made this approach

appear impractical. Finally, the requirement for both graph structure and module set

transformations would roughly double the effort required to implement this approach.

The method that was used only requires modifications to the structure of the path graph.

The graph structure is transformed until it contains operations that can be implemented with

existing modules.

The transformations are intimately associated with the path graph and micro-operation

sequence, and a brief description of those data structures must be presented before the

individual transformations can be discussed.

2.3 Data Pa rt Rep resentation

In 1977, Lou Hafer [Hafer 77] provided the key software tool that made this research and the

rest of the CMU-DA implementation possible. That tool is a translator used to bridge the gap

between the behavioral description produced by the ISP compiler [Barbacci 79] and the

functional logic design level. The translator is called the DatalMemory (DIM) allocator for the

distributed design style. This DIM allocator produces a functional logic level description of

the data part of a design as a directed graph called a data path graph (or path graph). A

control part representation is also produced by the DIM allocator and it will be described in

Section 2.4.

Nodes of a path graph describe the variables, operators, switches, and data links. The data

flow is described by directed edges. A path graph may describe any degree of complexity and

may be non-planar, cyclic, and disconnected. Figures 2-1 and 2-22 show the basic node types

that may be interconnected to form a path graph.

2Reproduced from [Hafer 77] by permissi~n of the author.

19

VARIABLE
NODE

LJNK NODE

OPERATOR
NODE

MULTIPLEXORI
DEMULTIPLEXOR

NODE

CONSTANT
NODE

t:' "
MAR(0:3) <- - - - - variable node body

<- - - - - - - - - - unstructured output diverge
'-....::....:'---

input bit connections . .
conn",:tions are written as (left blt>,,(right bit>

/ " the lettmost bit of a varioble is bit 0

t:'
0,,7 TPI <- - - - - - - - input connectio.n flag

----...:.:;~~I tile flags descnbe the connection logical charactensllcs

LJNK 1<-1-------- processid

------=-=-"

0,,7 TPQ<- - - - - - - - output connection flag
1',

, - - - - - - - - - output bit connections

- operator inputs (may be any number)

input bitwidth

ADD<- operation

(4) <- - - - - - - - - - output bitwidth

OUT <- - - - - - - - - operator output (may olso be any number)

<- - - - - - - - - unstructured input merge
'--,.--

/ - - - - - - - - - multiplex/demultiplex dot;) path choices.--------'L.----r:....-----,
It

<- - - path select control inputMUX 2 X <8>
1\ t',
I

I

I
, - - - - - - do,a poth bitwidth

I OUT < - - - - - - - - - unstructured output Jiverge

'- - - - - - - - - - - - - - - - - mllx/demux identification

/ - - - - - - - - constont value

"

'..:;-=-----=-.... <- - -

(4)(4)

constant structure

unStructured output diverge

Figu re 2·1: Basic Path Graph Nodes(a)

20

GP
CONCATENATION ~NODE

~

1..2 CPO

HALF LINK
NODE [~~I~~ ~]

used to snecify one side of a connection
for later use by the control allocator
codes are identical to full links

CONNECTION FLAG CODE

C: complemented

T: true

p. parallel

S: serial

I: input

0: output

Figure 2-2: Basic Path Graph Nodes (b)

21

2.3.1 Variable Carriers (VC)

The Variable Carrier (VC) class of nodes includes registers, register arrays (memories), and

constants. Registers and register arrays each have one data input and one or more outputs.

Constants have no data inputs and one or more outputs.

Registers, register arrays, and constants all require a bit range. A bit range specifies a

starting bit number and an ending bit number. The bit range is specified in the form:

<starting-bit:ending-bit)

Examples of registers with bit ranges are:

MAR<0:3>
PC<O: 11>·

In addition to the bit range, register arrays require a word range of the form:

[starting-word:ending-wordJ

A memory might be described as:

MP[0:4095]<0:7>

The following example shows the format of a typical VC Path Graph node in ASCII form:

REG NODE ADDR.: #322 ASYTAB INDEX: # 30
The fields are interpreted as:

REG => A register path graph node.

NODE ADDR.: #322 => The unique path graph node number.

ASYTAB INDEX: => Allocator Symbol Table identifier.

30 => Unique symbol table node number.

The corresponding symbol table entry appears as follows:

30 REG LAC<0:12> READ WRITE
BITS: 13 NIBBLE SIZE: 13 LSHIFT RSHIFT
READ IN ICE'S: POPS
WRITTEN IN ICE'S: POPS

The symbol table fields may be interpreted as follows:

30 => The unique symbol table node number.

LAC => The carrier (register) name.

<0:12) => Bit map showing a 13 bit register.

READ => Register is read.

WRITE => Register is written.

BITS: 13 => Register bit width.

NIBBLE SIZE: 13 => Smallest partition read or written

is 13 bits.

22

LSHIFT =) Left shift mergered operator.

RSHIFT =) Right sh ift me rged operator'.

READ in ICE'S: =) Independent Control Environments

(ICE) where register is read.
PDP =) The name of the ICE where register

is read.
WRITTEN in ICE'S =) ICEs where register is written.
PDP =) The name of the ICE where register

is written.

2.3.2 Path Carriers (PC)

The Path Carrier class of nodes includes links and half-links. Path carriers do not store

information, but direct its passage by specifying the direction of data flow, defining the logical

sense of the inputs and outputs, and identifying bit mapping for the inputs and outputs. Links

specify a complete connection between a predecessor node and a successor node. Links

have exactly one input connection and one output connection. Half-links have an input

connection, but no output destination. Half-links provide termination points for connections

that will be used by the control allocator.

An example of a link Path Graph node is shown below:

LINK NODE ADDR.: #154 ICE 10: # 0

SOURCE NODE: # 35 OUTPUT 1 BIT CONNECTImJS: 0:0

CONNECTION FLAGS: TPO

DEST. NODE: # 24 INPUT 1 BIT CONNECTIONS: 0:0

CONNECTION FLAGS: TPI

The link node fields may be interpreted as:

LINK =) Link Path Graph node type.

NODE ADDR.: #154 =) Unique Path Graph node numbe r.

ICE ID: # D =) Independent Control Environment

where the link appears.
SOURCE NODE: #35 =) Path Graph node number that acts

as the source for the link.
OUTPUT 1 =) L.i nk connects to the first output

of the source node.
BIT CONNECTIONS: =) Identifier to indicate bit mapping

from the source.
D: D	 =) Connect to bit D (leftmost bit)

of the source.
CONNECTION FLAGS =) Identifier indicating source

connection attributes follow.
TPO =) True, Positive, Output source

connection attribute.
DEST. NODE: #24 =) Path Graph node number that acts

23

as the destination for the link.
INPUT 1 => Link connects to the first input

of the destination node.
BIT CONNECTIONS: => Identifier to indicate bit mapping

from the destination.
0:0	 => Connect to bit 0 (leftmost bit)

of the destination.
CONNECTION FLAGS => Identifier indicating destination

connection attributes follow.
TPI	 => True, Positive, Input destination

connection attribute.

2.3.3 Variable Operators (VO)

The Variable Operator (Va) class of nodes is comprised of all logical, relational, and

arithmetic data operators. These operators have one or more inputs (depending on their

function) and they may have one or more outputs. The input and output bit widths are

separately specified. Logical operators have an output bit width that is identical to the input

bit widths. Arithmetic operators have outputs that are one bit larger than the input bit widths

in order to capture carries. Relational operators have a single bit output that can be

interpreted as a boolean.

An example of the ASCII form of a va node is shown below:

OPER NODE ADDR.:	 #337 ADD OPTAB INDEX: # 36

These path graph node fields can be interpreted as:

OPER =>	 Operator type node.
NODE ADDR.: =>	 Node Address identifier.
#337 =>	 The unique path graph node address.
ADD =>	 Unsigned addition operator.
OPTAB INDEX: =>	 Operator table index identifier.
# 35 =>	 Node number of the corresponding

operator table entry.

I'

24

The corresponding operator table entry is:

# 35	 ARITH ADD BITWIDTH: 13 2 INPUT(S) 1 OUTPUT(S)
INPUT BITWIDTH: 12 OUTPUT BITWIDTH: 13

The operator table fields can be interpreted as:

35 =) Unique operator table node number.

ARITH =) Arithmetic operator class.

ADD =) Unsigned addition operator.

BITWIDTH: =) Identifier for operator bit width.

13 =) This operator is 13 bits wide.

2 INPUT(S) =) The number of data inputs.

1 OUTPLlT(S) =) The number of data outputs.

INPUT BITWIDTH: =) Identifier for data path input

bit width.
12 =) 12 bit wide data path inputs.
OUTPUT BITWIDTH: =) Identifier for data path output

bit width.
13 =) Output bit width includes carry.

2.3.4 Path Operators (PO)

The Path Operator (PO) class of nodes includes multiplexors and concatenations.

Multiplexors may have two or more data inputs and one or more data outputs. Exactly one of

the data inputs is selected and connected to the outputs at any time. The selection criteria is

derived from the data part (terminating in a half-link) but the actual selection is the

responsibility of the control allocator. Concatenations provide the mechanism for merging

two or more data paths into a single data path. The bit width of a concatenation is the sum of

the bit widths of all inputs.

An example of the ASCII representation for a PO path graph node is:

MUX	 NODE ADDR.: #4 4 CHOICES OF 12 BITS

These path graph node fields can be interpreted as:

MUX =) Node operation identifier.

NODE ADDR.: #4 =) Unique path graph node number.

4 CHOICES =) The number of selectable mux inputs.

OF 12 BITS =) The width of each selectable input.

The other PO node types have slightly different syntax since they do not have selects.

25

2.4 Control Part Representation

The control information for a design is provided in a form separate from the data path

graph. The micro-operation sequence is a list of operations with sources and destinations. It

is not unlike a high level programming language in that:

• It is a linearized form of the control flow for the design.

• It	 contains a mixture of' data activation operations and sequence alteration
operations.

• It implicitly specifies activation of the successor micro-operation sequence unless
there is an explicit operation to alter control flow.

• It does not contain detailed information about the machine that it is controlling.
Rather, it references the data part nodes that con!ain detailed information.

The overview presented here is designed only to provide enough of a description to allow a

discussion of the impact of data part transformations on the micro-operation sequence. The

functional level syntax for micro-operation sequence instructions produced by the DIM

allocator is given in [Hafer 79]. Some syntax extensions required by structural level

transformations are demonsfrated in this chapter, but their complete definition is given in

[Leive80].

The general format for data micro-operations is:

<op>.<dest>.<source>;

Where:
<op>	 opcode
<dest> ::= destination
<source>i ::= <source i >. I <source>.<source i+1>
<source 1> .. = {first source}
~sourcei+l> .. = {second. third ... , nth source}
1	 1 I 2 I ... I n
n ::= {any integer}

Variable carriers and variabre operators enter micro-operations in slightly different manners

that will be outlined separately.

26

2.4.1 VC Micro-Operations

Variable carriers occur in micro-operations as both sources and and destinations. An

instruction to load a register (R1) with the contents of another register (R2) would take the

form:

#210(MOVE),#1(R1),#2(R2):#6,;

Where:	 #210 .. = Opcode for. the ISP3 MOVE instruction.
(MOVE) ::= Operator name .
#1 .• = Node number of the destination register.
(R1) Variable name of the destination register .
#2 .. = Node number of the source register.
(R2) ::= Variable name of the source .

:#6 •. = Node number of the link connecting R1 and R2.

2.4.2 VO Micro-Operations

Variable operators enter into the micro-operation sequence directly as operations or as

sources for. other operations. VOs never occur as destinations, only VCs may be destinations.

Consider a micro-operation sequence that controls adding the contents of two registers (R1

and R2) and storing the result in a third register (R3):

#261(ADD2C):#4:#7,#1(R3),#2(R1):#5,#3(R2):#6;

.... =Where: #261 Opcode for the ISP ADD2C instruction.
.. .. =(ADD2C) Operator name .

:#4 Node number of the ope ra to r.
:#7 Node number of the link connecting

ADD2C to R3.

.... =
#1 Node number of the destination register.
.... =(R3) Variable name of the destination register.

#2 Node numbe r of the fi rst source register.
(R1) Variable name of the fi rs t source.

:#5	 : : = Node numbe r of the 1 ink connecting
R3 to ADD2C.

#3 : : = Node numbe r of the second source reg i s te r.
(R2) Variable name of the second source..... =

:#6 : : = Node numbe r of the link connecting
R2 to ADD2C.

A path graph contains both the data part description of a design (at a functional logic level)

and controlling information to specify the activation sequence of data part operations. The

preceding discussions of the path graph and the micro-operations are not detailed, but they

3This Opcode is a member of ISPS codes considered to be archaic by ISPS maintainers but still in use for CMU·DA .	 .

27

should provide sufficient information to proceed to the descriptions of the structure

transformations.

2.5 Pa rtitioning Transfo rmations

If certain types of nodes could be subdivided (partitioned) it would become possible to

match the resulting nodes to the limitations of physical devices. For example, if the bit width

of a register node was not an even multiple of the number of bits in a register module,

partitioning might be desirable. Partitioning could divide the register node into one section

that would be evenly covered by the bit width of a selected module and another section that

could be used to select a module with a smaller bit width. In the PDP-B, the Link!Accumulator

is a 13 bit register. When selecting modules from the TTL module set, candidates consist of

four bit registers and one bit registers. Under certain constraints (Le. cost minimization), the

desired mixture would be to implement the Link!Accumulator with three packages of four bit

registers and one package of aone bit register.

There are two categories of partition that may be treated separately: bit boundary

partitioning and input boundary partitioning. Registers and operators generally have a

predictable number of data inputs that is required by their function. The hardware modules

that implement the behavior of registers and operators usually have the expected number of

inputs. Therefore it is only necessary to be concerned with partitioning registers and

operators along bit boundaries. Multiplexors have various numbers of inputs and it is

necessary to partition them along input boundaries. Demultiplexors do not occur in a path

graph and are not dealt with by the current implementation of SYNNER.

2.5.1 Bit Boundary Partitioning

The bit boundary partitioning of registers and operators appear to be similar enough that

they can be treated together. There are certain instances where differences occur. These

differences will be identified and alternate paths in the transformations will be discussed.

The bit boundary partitioning transformation essentially splits a node into two sections and

requires a knowledge of the node type, the desired bit boundary for partitioning, and the initial

bit width of a node. The first step is to incarnate a new node of the same type. The new node

will be called the right part and the original node will be called the left part. If the original

node had data inputs n bits wide, and the partitioning boundary b was indicated, the left part

would become (n - b) bits wide and the right part would be b bits wide.

28

A concatenation node is incarnated for registers and arithmetic or logical operators to

provide a connection point for output links that are different widths than either the left or right

parts. The concatenation node is connected with links to both the left and right parts. All

outputs links that are the identical bit width of the left part remain connected to it. All output

links that are the identical bit width of the right part are moved so that they connect to it. All

other output links are moved so that they connect to the concatenation. Relational operators

always generate a single bit boolean output regardless of the input bit width. To

"concatenate" the outputs of the left and right parts of a partitioned relational operator it is

necessary to AND the resulting outputs and move all output links to the incarnated AND

operator.

Input links are constructed to the right part from all nodes that connected to the inputs of

the original node. The original links remain connected to the left part. Their bit width is

adjusted to match the new width of the left part. In the case of arithmetic operators, a carry

link is connected between the right and left parts. This is a single bit link with a special flag

identifying its carry function. Registers nodes that are required to perform shift, rotate,

increment, or decrement operations are connected with links to allow shifting, rotating, or

carries.

Figure 2-3 shows the progressive complexity that occurs when splitting certain nodes of a

path graph. In this example, the path graph represents the addition of the contents of two

registers (R1 anq R2) and storing the result in a third register (R3). The adder is first split into

two parts (Figure 2-3b), then one of the source registers (R2) is split (Figure 2-3c). When the

adder is split, an explicit carry (Link # 11) is generated. A constant zero (Node # 17) is also

tied to the carry input of Node # 1O. A concatenation (Node # 12) is generated to merge the

data paths from the two adders. Links (with four bit mappings) are routed from R1 and R2 to

the two adders. When R2 is split, there is relatively little change in this example. The register

is divided into a left part and a right part. In this case there is no need for concatenation since

the existing links (# 6 and # 16) match the input bit widths of the destination adders and have

the correct mapping. If R2 had been split on another boundary (Le. a left part of one bit and a

right part of 6 bits), a concatenation would have been necessary. If R2 had included merged

operators for shift, rotate, increment, or decrement, there would have been carry or shift links

included by the partitioning transformation.

The original micro-operation sequence for this path graph is the same as the example in

Section 2.4.2:

#261(ADD2C):#4:#7,#1(R3),#2(Rl):#5,#3(R2):#6;

After the adder is split, the micro sequence takes the form:

29

5

17

Constant 0

A. Initial Path Graph B. Partitioned ADD2C

17
).d-----j

Constunt 0

C. Partitioned R2 and AD02C

Figu re 2-3: Bit Boundary Partitioning

30

#261(ADD2C):#4@#lO:#13@#14,#l(R3),#2(Rl):#5@#15,#3(R2):#6@#16;

The concatenated node numbers (# 4@ # 10) identify the left and right parts of the split

adder. The concatenated destination link numbers (# 13@ # 14) identify the links joining the

left part adder (# 4) and the right part adder (# 10) to R3. The concatenated source link

numbers (# 5@ # 15 and # 6@ # 16) identify the link pairs from the sources to the right and

left parts of the adder.

When the source register (R2) is split, the micro-operation sequence becomes:

#261(ADD2C):#4@#lO:#13@#14,#l(R3).#2(Rl):#5@#15,
#3@#21(%OR2@%lR2):#6@#16;

Unique names are constructed for the right and left parts of R2 (%OR2 and %1 R2). The

ADD2C micro-operation sequence is changed to identify the node numbers of the two parts of

R2.

2.5.2 Input Boundary Partitioning

Multiplexors are members of the class of nodes termed path operators (PO). They appear

to require partitioning by the number of inputs rather than by the bit width of the input. The

approach is similar to bit width partitioning, but the resulting structure is somewhat different.

As in the case of bit width partition, the original node will be partitioned into a left part and

right part. In this case, instead of a concatenation, there will be a joining multiplexor called

the bottom pa rt. If a n input node is partitioned at the jth input, the left part will have (i - 1)

inputs and the right part will have (n - i) inputs. The bottom part will have two inputs.

Figure 2-3 illustrates input boundary partitioning. Initially, there is a seven input multiplexor

of arbitrary (lin" bit) bit width in a path graph. If partitioning were directed to occur at input

five (5), the three multiplexor arrangement shown in the Figure 2-3b would result. The left part

would retain the original node number (# 1) but it would be reduced to four inputs. A right

part node (Node # 2) would be incarnated in the path graph and it would be linked to inputs 5,

6, and 7 of the original multiplexor. The inputs to Node # 2 would be renumbered as 1,2, and

3. A bottom part multiplexor (Node # 3) would be generated to merge the right and left part

multiplexors.

If a second partitioning were directed to split Node # 2 at input three (Figure 2-3c), no right

part multiplexor would be generated: Instead, the bottom part multiplexor (Node #3) would

have its inputs increased to receive the single input (input 3). Note that this structure requires

exactly the same components that would be required to implement the first partitioning.

mailto:261(ADD2C):#4@#lO:#13@#14,#l(R3).#2(Rl):#5@#15

31

If a third partitioning were directed divide Node #3 at the third input, the structure shown in

Figure 2-3d would result. The process could be extended until only two input multiplexors

would be required for implementing the original seven input multiplexor.

Viewing the progression of structures in Figure 2-3, it is clear that there are several

considerations that must be weighed before directing a partitioning. The increasing depth of

the structure adds delay to the design. In packaged module sets (such as TTL) cost

evaluation must consider the package cost and the available spare (free) modules. It is

possible that the original seven input multiplexor implemented with an eight input SN74151

might be both the cheapest and fastest implementation. Alternatively, if one or more spare

SN74153 or SN74157 were available (from a previously mounted package), any of the other

configurations might be the cheapest. The transformations do not specify modules (spares or

otherwise), but they do establish conditions that favor certain selections. These types of

considerations must be evaluated before initiating the input partitioning transformation. All

evaluations are the responsibility of the designer if the system is used manually, or of the

controlling software if the system is used in the automatic mode.

Multiplexors are not directly represented in the micro-operation list. Therefore, the micro

operations are not transformed during multiplexor input partitioning.

2.6 Combining Transformations

Two general classes of combining transformations have been identified. The vertical join

transformation combines cas~aded logical operators of a similar type. The horizontal join

combines adjacent arithmetic or relational operators. of a similar type. These transformations

appear to be quite useful in dealing with constructs that regularly occur in path graphs, but

they could actually be viewed as special cases that could be included in a more generalized

logic reduction capability.

2.6.1 Vertical Join Transformations

The vertical join transformation is used to merge cascaded logical operators of a similar

type. An example of this situation would occur if two AND nodes (each with two inputs) were

connected such that the output of one AND node (the top pa rt) served as one of the inputs of

the second AND node (the bottom pa rt). The cascade of two operators can occur either

during synthesis or directly from the functional logic level input.

32

'2 3 4 2 3
3 4 5 6 7

B. First Partition: Node 1 at InputSA. Original Node: 7 Input by "N" Bits

2 3 4 2 2

C. Second Partition: Node 2 at Input 3
 D. Third P3rtition: Node 3 at Input3

Figu re 2-4: Input Boundary P8.ltitioning

33

A pair of logical operators is defined to be similar if:

• Both operators are of identical types.

• The bottom part operator is a NAND and the top part operator is an AND.

• The bottom part operator is a NOR and the top part operator is an OR.

The vertical join transformation will not be performed unless the common link connecting

the bottom part and the top part is the only output from the top part. The transformation

moves all bottom part inputs that do not interconnect the two nodes to the top part. All

outputs from the bottom part are moved to the top part. The link connecting the two nodes is

deleted. The bottom part node is deleted.

The micro-operation sequence for cascaded operators is represented by two chained

instructions. The transformation increases the number of inputs in the first micro-operation

instruction, moves any destination information from the second instruction to the first

instruction, and deletes the second instruction.

Figure 2-5a shows the example of a NAND node with two cascaded AND nodes. The

vertical join transformation (applied to Nodes # 11 and # 14) will cause Node # 14's inputs

(and implicit inversion) to be assumed by Node # 11. Node # 11 will become a three input

NAND as shown in Figure 2-5b. If the vertical join transformation were applied to Nodes # 6

and # 11 of Figure 2-3b, the single four input NAND node (# 6) shown in Figure 2-3c would

result. The original micro-operation sequence for the cascaded nodes is:

#235(ANO) :#6, ,#1(0) :#7 ,#2(C) :#10;
#235(ANO):#11, ,#6(OPER):#12,#3(B):#13;
#237(NANO):#14, ,#11(OPER):#15,#4(A):#16;
#210(MOVE),#5(E),#14(OPER):#17,;

After the first vertical join (applied to Nodes # 11 and # 14) the modified micro-operation

sequence becomes:

#235(ANO):#6, ,#1(0):#7,#2(C):#10;

#237(NANO):#11, ,#6(OPER):#12,#3(B):#13,#4(A):#16;

#210(MOVE),#5(E),#11(OPER):#17,;

The second application of vertical join (to Nodes # 6 and # 11) results in a micro-operation

sequence that reflects the four input nature of the NAND node:

#237(NANO) :#6, ,#1(0) :#7 ,#2(C) :#10,#3(B) :#13 ,#4(A) :#16;
#210(MOVE),#5(E),#6(OPER):#17,;

34

1[0]

7

AND

12

AND

3[B]4[A]

5[E]

B. First Join: Merge NAND (It 14). AND (# 11)

5[E]

A. Initial: NAND-AND Cascade

5[E]

C. Second Join: Merge ~IAi'lO (# 11), AND (#6)

Figu re 2-5: Combining AND Gates.

35

2.6.2 Horizontal Join Transformations

Horizontal join transformations are used to combine arithmetic or relational operator nodes

in order to eliminate duplicating hardware. The principle considerations for combining with a

horizontal join are:

• The nodes must be in different control structures (they must never be required at
the same time).

• The nodes must be of a type for which candidate modules exist after combination
by a multifunction module (ALU) available from the database.

• There	 must be some benefit (such as reduction in cost) that requires
consideration of a horizontal join.

If the conditions justify proceeding with a horizontal jo.in, the right pa rt characteristics and

connections are mapped onto the left pa rt:

• All	 right pa rt output links are moved to the output of the left pa rt. Any links that
have the same destination and the same bit mapping as existing left pa rt links
are eliminated. Links that can be eliminated reduce the input requirements to

" other nodes (usually multiplexors) and further reduce the cost of the design.

• All	 right pa rt input links are moved to the appropriate input of the left pa rt.
Input links are matched and redundant links are eliminated. Inputs to the left
pa rt are multiplexed if necessary.

• The Micro-operation Sequence Table is updated to reflect a change in node
reference number for right pa rt operations. No new micro-operations are
created and no existing micro-operations are eliminated.

• The right pa rt is deleted.

2.7 Equivalence Transfo rmations

There are several ways to implement every logical. relational or arithmetic operation. It is

possible, at one extreme, to implement every design using only NOR gates. Given today's MSI

and LSI devices, this approach would be expensive because the low functionality of" the

devices would lead to a large number of packages and interconnections. At the other

extreme, it would be possible to implement most designs using multifunction devices such as

ALUs. Again, this approach would be expensive because the high functionality would be

wasted in areas of the design where simple operations predominate. The large number of

possibilities for implementing even the simplest functions poses a rather serious threat to

including enough transformations in a program to implement general designs. An alternative

36

would be to select a usable subset of transformations to be included in a program. However,

selecting a subset that would be complete enough to cover all designs might be difficult. It

would also be difficult to include additional transformations because they would have to be

coded, debugged, and inserted in the control structure of the program. Additionally, the

transformations required by the same design are apt to change with different module sets. If

the transformations could be altered or extended without too much difficulty, it would help

insure that the transformations achieve "technological relevance" by making it easy to apply

any new functions that are added to module sets.

In the LSMS system implementation, it was decided to abstract the equivalence

transformation process by providing the knowledge of equivalences in an external database

and programming the means of manipulating that knowledge. By abstracting the

transformation process, the program would not need to know anything about the semantics of

the equivalences, it would just need to understand how to apply a relatively small number of

syntactic entities. The equivalences can exist in a format that is easy for designers to modify

and is easy for the synthesis program· to interpret. This approach appeared to be useful for

the class of transformations that deal with specific operators.

37

2.7.1 Synthesis Equivalence Language

The form of representation for the external equivalences was a matter of some concern and

consideration. The most attractive choice was some form of existing language definition such

as ISPS or the Global Data Base (GOB) language. However, both of those languages are

more general than were required for this research. The difficulties of constructing supporting

software to translate ISPS or GOB descriptions into a form useful for this application

precluded their use. A tree structured language named Synthesis Equivalence Language

(SEL) was developed to satisfy both the requirements of designers and the requirements of

SYNNER. A complete BNF of SEL is given in Appendix B. A brief description of the language

features will be given here to provide a basis for discussing how these abstracted

transformations are applied to a design.

The basic relationship defined by a SEL description is an equivalence stating that the right

side of the description is equivalent to the left side. The right side of an equivalence consists

of a class and a classtype. The left side consists of one or more reference line identifiers

lineid and corresponding type equivalences typeqv. The basic syntax of an equivalence

statement is:

CLASS:CLASSTYPE *LINEID TYPEQV
An example of the equivalence for translating a two's complement relational equal to an

unsigned equal would be:

RELAT:EQL2C *1 EQL $1 $2
There are two inputs implicitly associated with the EQL2C and two inputs explicitly associated

with the EQL. The explicit inputs are named "$1" and "$2". The "$" identifies the input as a

source and the numbers indicate the position of the source on multi-input devices. A single

output is implicit for EQL2C and is explicitly identified for the EQL as a termination on the line

reference (*1).

SEL can specify most logical constructs through the use of features that allow multiple line

equivalences, nonspecific repetition of inputs, and bit mapping. The following examples

demonstrate the major SEL capabilities.

RELAT:LEQ2C	 SUB $1 $2

OR -1<0> (NOR [-l~l>J)

Where:
RELAT => Class (Relational).
LEQ2C => Classtype (two's complement

less-than-or-equal).
*1 => Line 1 identifier.
SUB => Line 1 operator (unsigned subtract).
$1 => First source input to SUB.
$2 => Second source input to SUB.

There is no explicit bit mapping in Line 1. Input bit

widths are derived from the LEQ2C operator. The output

bit width will be the input bit width + 1 to account

for a carry out bit.

The second line starts with the reference number:

*2 => Line 2 identifier.

OR => Line 2 operator (Logical inclusive OR).

*1<0> => First source input to OR.

*1 =>	 Reference to Line 1 (output of
of SUB as a source to the OR.

<0>	 => Bit map, the leftmost bit (0)
is the single bit input.

=> Delimiter indicating the start of a nested
operation as the second source.

NOR => Operator.
[*l<l>J => Repeated source reference.

Line 1 is the referenced output (from SUB).
Start with bit 1 of the output (leftmost bit
to the right of the carry) and connect
successive bits as inputs to NOR until
all Line 1 output bits are exhausted.
The number of inputs to the NOR is wholly
dependent on the size of the SUB operator.

=> Close nested source.

39

The following equivalence defines a different but equally valid form of LEQ2C.

RELAT:LEQ2C *1 NOT (GTR2C $1 $2)

Where:
RELAT =) Class (Relational).
LEQ2C =) Classtype (2's complement less-than-or-equal).
*1 =) Line 1 identifier.
NOT =) Operator.
(=) Delimiter indicating the start of a nested

operation as the first (only) source.
GTR2C =) Two's complement greater-than operator.
$1 =) First source to GTR2C.
$2 =) Second source to GTR2C.
) =) Close nested operation delimiter.

The separate equivalences for LEQ2C demonstrated a number of SEL features including

the basic prefix (operator-source-source) form, line references, nested operations as sources,

and repeated bit sequences as sources. The following example shows a means of specifying

an increment (INCR) operation and introduces the specification of constants in SEL.

ARITH:INCR

Where:
ARITH
INCR
*1
ADD
$1
#1

*1 ADD $1 #1

=)	 Class (Arithmetic).
=)	 Classtype (unsigned increment).
=)	 Line 1 identifier.
=)	 Line 1 operator (unsigned add).
=)	 First source input to ADD.
=)	 Constant of value 1 as the second

source input to ADD.

The final example demonstrates an equivalence for the two's complement subtract

operation. This equivalence uses the complement and increment algorithm. A special

qualifier "{CI}" is introduced to mark a source which is to be connected to an adder's carry

input.

ARITH: SUB2C

Where:
ARITH
SUB2C

*1
ADD
$1
(

NOT

*1 ADD $1 (NOT $2) #1(O){CI}

=) Class (Arithmetic).
=) Classtype (two's complement

sUbtract) .
=) Line 1 identifier.
=) Line 1 operator (unsigned addition).
=) First source.
=) Delimiter indicating the beginning

of a nested source.
=) Nested operation.

40

$2 =>	 First (only) source to the NOT operation
is the second source to the SUB2C.

) =>	 End nested source delimiter.
#1 =>	 Constant (value 1).
<0>	 => Bit map forcing the constant to a bit

width of one.
{Cl}	 => Qualifier forcing the constant to be

connected to the carry input of an adder.

2.7.2 Template Generation

SEL descriptions provide the guidance for the translation process. They are used to build a

trial structure called a template that is an intermediate form between a SEL equivalence and a

path graph. Templates are used during design synthesis to evaluate how well an equivalence

matches the module set and the constraints. When an appropriate template is identified, the

transformation is completed by translating the template into path graph elements and micro

operation instructions. Both the evaluation and the translation of the template into path graph

form are intimately tied to the design transformation decision process that will be discussed in

Chapter 3. The template generation process will be discussed here although it could best be

though of as only half of a transformation.

A template is a tree structured representation of the SEL equivalence. It is always

associated with a path graph node (refered to as the root node) that requires transformation.

The actual nodes in the tree could be termed pseudo path graph nodes. Nodes that have

representations in the path graph (registers, operators, and constants) are identical to path

graph nodes. Special nodes are generated to represent sources, nests, repetitions, and line

references. A template does not contain explicit links, but the data flow is implicit within the

tree structure itself.

The bit widths of the sources, registers, and operators must be determined during

generation of a template. If the SEL equivalence specifies absolute bit mapping for a node or

a group of nodes, that information predominates. If no information is provided in the SEL

description, the default bit width of the root node predominates. Between those extremes, a

portion of the bit width information may be derived from both the SEL description and the root

node if both absolute and relative bit mapping is specified in the range information.

The sources of the SEL description must be correctly associated with the actual source

links to the root node. This is accomplished by threaded traces to the sources of the root.

There is no problem or complication when the template refers directly to a root node in the

path graph. However, the template generation process may be applied recursively to

41

synthesize and evaluate equivalences for nodes that are members of a template. In that case,

the threaded traces become quite important to prov!de a pa!h to the outer sources. The line

identifiers may be used as sources in multiple line SEL descriptions and they must be

threaded in the same manner as sources.

2.8 Me rged Ope ration Tra nsfo rmations

Register nodes in a path graph may specify associated operations that the register must be

able to perform. These associated operations are calted me rged ope rations. The merged

operations are:

• Clear

• Load

• Left Shift

• Right Shift

• Increment

• Decrement

Clear and load are attributes of certain register modules and do not require transformation.

They become part of the module selection process. The remaining merged operations may

require transformation to insure a correct implementation of all desired functions.

Consider a register node that requires both shifting and counting. In the TTL module set,

there are shift registers and there are counters, but there is not a single module that can

implement both functions. This situation requires that one of the merged operations be

selected to be included with the register and the other operation be implemented in some

other manner. If a counter were chosen to implement the node, the shift functions could be

implemented with multiplexors by skewing an output from the register to multiplexors on the

input of the register. This technique could be used if the shifting was by a constant number of

bits. Another choice would be to insert a shift register into the data path. This option is rilost

desirable when shifting is by a variable number of bits. If a shift register were chosen to

implement the node, the count function could be implemented by inserting an appropriate

function (increment or decrement) in to the path graph and synthesizing it with available

adders or subtracters. In module sets that do not contain counters or shift registers, both

functions would have to be performed externally to the .original registers.

42

2.9 Inversion

A path graph produced by the Data/Memory Allocator identifies inversions implicitly as

attributes of the links interconnecting the nodes. In order to operate on the path graph it is

necessary to make the inversions expli<;:it by incarnating NOT nodes in the data paths where

inversions are specified.

The input to a link and the output from a link have separate specifications for the logical

sense of the data at the connection point. The logical sense of the data can be either true or

complemented. If the input and output specifications to a link are the same (both true or both

complemented), there is no net inversion. If the input and output specifications are different

(one is true and the other complemented), an inversion is required. In this case, a NOT node

is incarnated in the path graph. The link is moved to connect from the predecessor node to

the NOT node. The input and output specifications are both set to true. A new link is

incarnated and connected between the NOT node and the successor node.

2.10 Summary

The transformations described in this chapter are a set of tools that appear to be useful for

performing logic synthesis by modifying the structure of a design graph. However,

automating the synthesis process requires that the application of these transformations be

based on judgment and careful direction. The next chapter discusses a control structure that

can act as a surrogate designer by exercising such judgment and direction.

43

Chapter 3

Automating Logic Synthesis

"If everybody contemplates the infinite instead of fixing the drains, many of us
will die of cholera" -- John Rich

3.1 Overview of the Automated LSMS Process

The previous chapter outlined a set of transformations used to alter the structure of a

design. The transformations are key to successful synthesis, but they only provide a bare

capability. The larger context of achieving a transformed design with the hardware selected

for implementation requires a supporting process that directs the application of the

transformations. The supporting process that evolved for this implementation operates in

three distinct phases:

• Phase	 I - Removes any existing module selections and explicitly identifies
inversions in the path graph.

• Phase II - Identifies all modules that might be used to implement each node. This
phase also subdivides the design into smaller sections (called windows) to
facilitate analysis and synthesis.

• Phase III - The surrogate designer that exercises the judgment necessary to direct
the actual synthesis and module selection.

The first two phases perform the operations to prepare a design for synthesis. The third

phase is far more involved and consists of a number of operations that evaluate module

choices, perform trial synthesis, apply transformations, and install synthesized constructs in a

path graph.

44

3.1.1 Phase I . Unbind/Invert

The first phase of LSMS consists of a pass over the entire design to dissociate the nodes

from any existing hardware information4 .

A path graph delivered by the Data/Memory allocator specifies inversion implicitly on the

interconnecting links. During this first pass over the design, any required inversions are

identified and explicit NOT nodes are incarnated in the path graph using the inversion

transformation. The inversions could have been handled in other ways at other points in the

processing. It is conceivable that the inversions could be left as information stored in the links

until specific devices were considered for implementing a node. At that time, consideration

could be given to devices having inverting outputs or inverting inputs. Incarnating' explicit

NOT nodes in the path graph during Phase I was chosen primarily as a mechanism for

defering consideration of special cases such as inverting outputs and DeMorgan

transformations until the final structure of the design was better determined.

3.1.2 Phase II - Candidate/Window

A second pass over the entire design is required to identify candidate modules. Candidate

selection develops a list of all devices from the current module set that might be used for

implementation of a node. Candidate selection is performed initially for all nodes in a design

that require modules. It is also performed later in the processing for any nodes that are

incarnated during synthesis. .Consideration was given to incorporating candidate selection

into Phase I to save one pass over the design. Because of the incarnation of NOT nodes

which altered the structure of the path graph during Phase I, it actually requires less overhead

to make a distinct second pass for candidate selection.

During this pass, a design is partitioned into entities called windows. A window is defined

to include exactly one register and all non-register nodes that are in any path terminating at

the register. Windowing identifies localized areas of a design that may be structurally

modified without having to be concerned with the more global issues of parallelism resulting

in shared variables.

41n SYNNER, the unbinding can be disabled if desired

45

3.1.3 Phase III . Evaluate/Transform/Bind

Phase III processes a design window-by-window rather than node-by-node. Phases I and II

were procedures for getting the design into a correct form for synthesis. Phase III actually

directs the transformations and performs synthesis.

The processing in Phase III strikes a balance between the data path requirements, the

designer constraints, and the operations and data path characteristics of devices in the

module set. Evaluation of individual path graph nodes determines if any available devices can

support the node operation. If devices are available, the designer constraints and module

data path parameters are used to determine the best candidate for implementing the node.

Finally, a comparison of the node data path parameters and the best candidate's data path

parameters is used to determine if transformations are to be applied. If no best candidate can

be found to implement a path graph node, synthesis through application of equivalence

axioms is attempted. Each attempt at synthesis results in a template tree that consists of one

or more path graph nodes. A template tree is evaluated against designer's constraints and

the module set. Synthesis is attempted and the resulting tree is evaluated for all available

equivalence axioms of the appropriate type. The tree with the best evaluation is selected to

be installed as a replacement for the original path graph node. The installed tree must be

linked into the path graph and micro-operation instructions must be synthesized to specify a

control sequence for the replacement construct.

The remainder of this chapter is devoted to a more detailed explanation of evaluation,

transformation decisions, trial synthesis, and template tree installation, linkage, and micro

operation synthesis.

3.2 The Module Database

Device information is the major driving factor in processing designs with SYNNER.

Throughout the rest of this chapter, device information will enter into evaluations, decisions

concerning the application of transformations, and finally, the actual Path Graph node

implementation. The device information is of such importance that a brief overview of the

module database (MOB) subsystem will be given here. A more detailed account is included in

Appendix A.

The module database is uses a hierarchical access method that starts with a very general

index. The index contains pointers to several design style set indexes. A design style set is

an accumulation of module sets that favor implementation of a certain design style. A design

46

style set index contains pointers to one or more data books. A databook contains the

detailed information on devices that comprise a module set.

Databook entries are cataloged by a module identifier such as: SN7400. Each module entry

is comprised of a number of lines of information. Each line may contain a number of fields.

The exact format for module information is specified by a data definition (DDF). A data

definition is separate from the database. It defines fields within lines and the data type for

each field. The external DDF makes it relatively easy to change the information format

whenever necessary. Supporting software uses the DDF to operate on the database. A

database editor (DBEDIT) is used to enter and maintain information. An access package

(MDBLlB) is available for use by user programs. MDSLIB provides the means to access

information from any level of the database.

The flexibility provided at all levels of the database make it a powerful tool. In this research,

cost, delay, and power were the parameters of interest. Each module entry in each database

contains values for those parameters. If a different parameter became interesting in the

future, it would be quite easy to add it to the databases. TTL and the Sandia CMOS Cells were

the two module sets used in this research. More module sets can be added to the database

using the existing tools (i.e. no programs will have to be changed). Hypothetical devices

could be added to existing module sets. Designs could then be processed by SYNNER to

determine how the hypothetical devices impact the design space. In this manner, proposed

additions to mOdule sets could be evaluated before they are actually built.

Characteristics of devices mold the module selection choices made by human designers.

The remainder of this chapter is devoted to the description of a surrogate designer that is also

guided by device characteristics.

3.3 Implementation of a Su rrogate Designer

The various operations described in this section are all analogous to operations a human

designer would perfqrm while trying to choose devices from a module set to implement the

nodes of a design. Generally, a human designer would have a larger capacity to exercise

judgment in the application of these types of operations, and he would not be constrained by

the limitations inherent in a software implementation.

For the moment, the approach described here can be viewed as a proposed implementation

of the decision process leading to structural modification for module selection. The approach

remained a gamble throughout the development of SYNNER since it could only be verified

47

(through the experimental comparison to human designers discussed in Chapter 4) after

SYNNER was completed.

3.3.1 Evaluation

The evaluation process must determine which module (if any) is best suited to implement a

node. In order to make such a recommendation, candidate modules are evaluated according . .
to a set of weighted constraints and the module with the highest rank is identified.

3.3.1.1 Constraints

Constraints are supplied by the designer. Constraints are specified with the following BNF:

conkey conid conop conweight<CR)

conkey ::= CON I CONSTRAIN

conid ::= COST I DELAY I POWER I

{any element stored in the module database}
conop ::= conuop I con bop limit
conuop ::= MAX I MIN
conbop ::= LSS I LEQ I EQL I GTR I GEQ
1imit ::= {any' integer, real. string or boolean

according to the data type of <conid)}
conweight ::= {optional: a number supplied by the designer

identifying how much emphasis to place on
this constraint. Constraints are normalized
before application}

An example of a typical set of constraints would be:

CONSTRAIN COST MIN
CONSTRAIN POWER GTR 10
CONSTRAIN DELAY MAX .5

In this example, COST is constrained to be the minimum cost module that will implement

each node. POWER is constrained to be greater than 10. The value (10) will have units

specified for a particular module set. The units are milliwatts for TTL while CMOS Cells use

units of microwatts. DELAY is constrained to be the maximum in each case. The designer

has chosen a weight of 0.5 for the delay. Since neither of the other constraints specified a

weight, normalization would rank the importance of the constraints as:

COST =) 0.0
POWER =) 0.0
DELAY =) 1.0

If no weights were entered for any constrained item, equal defaults (other than 0) will be

applied prior to normalization. If the constraints had been:

CONSTRAIN COST MIN

CONSTRAIN POWER MIN

CONSTRAIN DELAY MAX

The normalized weights would be:

COST· => 0.33
POWER => 0.33
DELAY => 0.33

If no constraints are entered, a design is processed to minimize the cost.

The constraint processing implemented in SYf\INER is extensible. Any item that is specified

in a databook can be constrained. While cost, delay, and power were the constrained

parameters used throughout this research, the system design is flexible to support additional

investigations using other parameters. If, for example, an application were required to base

module selection on the temperature range of individual devices, it would be necessary to add

a temperature (call it TEMP) field to the databook entries for each module. A designer could

then constrain TEMP in the same manner as cost, delay, and power have been constrained

here.

3.3.1.2 Constraint Evaluation

Each candidate module for a path graph node is evaluated against all constraints. The list

of candidates is ordered such that the "best" candidate module for implementing the node is

recommended. The evaluation procedure will be described in this section.

For the following discussion, the distinction between modules and packages must be

stressed. Modules are logically indivisible gates, operators, registers, and multiplexors.

Packages are physically indivisible collections of modules. In the TTL module set, a SN7408

module is a single two input AND gate. A SN7408 package contains four of the AND gates. In

the Sandia Cell CMOS module set, modules and packages are identical since all cells are

comprised of only one logical entity.

The first step in evaluating any candidate is to determine the number of modules that are

required to span the bit width of the path graph node. The following symbols will be used in

this development:

NB Path graph node bit width.

MB Module bit width.

N The number of modules required to implement the

49

path graph node.

Then:

N = fNB/MBl

The number of packages is primarily a function of the number of modules per package. The

number of spare modules is included to reduce the required number of packages. Spare

modules can become available if only a portion of a package has been committed to

implement a node. The number of packages required can be determined by:

P Number of packages.

S = Number of spare modules.

C Number of modules per candidate package.

Then:

P = f(N - S) IC1

A few points should be made about use of spare modules. While this practice tends to

reduce the overall cost of a design, it also makes module selection somewhat dependent on

the order in which a design is processed. Spares might be available if the design were

processed in one order, but they might not be available if the design were processed in a

different sequence. This is not believed to be a significant problem. Prior to using spares

during evaluation, designs rarely had more than five percent spare modules after complete

processing. Therefore, the sequencing problem could be expected to occur at most five

percent of the time. It is interesting to note that the number of spare modules is still generally

in the range of five percent even when spares are included during evaluation.

All constraints except COST are evaluated directly on the basis the number of packages

and of information stored in the database. COST requires a bit of manipulation before

evaluation. Blakeslee [Blakeslee 75] indicates that there is an overhead cost associated with

each member of a packaged (Le. TTL) module set. The overhead cost can be used to lump

together estimated costs of manufacturing a complete system. For the packaged module

sets, three dollars ($3.00) is added to the cost of the package to arrive at an implementation

cost for mounting a package. For cell module sets, it is assumed that package cost is

analogous to cell area since the real estate on a wafer of silicon is a limited commodity. The

overhead cost is assumed to be a penalty incurred for interconnecting the cells. In the case of

Sandia Cells, a value of three (3) times the cell area [Sandia 78] is used as the overhead-cost

model. The cell overhead value does not include an estimate of I/O pad area. To formalize

the overhead-cost calculation, define:

50

PC = package cost

OHC = overhead cost for package modul e se·ts
OHC P

= overhead cost for cell module sets c

OHC p = P * ($3. + PC)

OHC = P (3. PC)* *

The resulting overhead-cost is then evaluated according to the specif.ied criteria.

c

After the number of packages and the overhead cost values are determined, a candidate is

evaluated against all the constraints. There are seven constraint operators:

MIN =) Minimum value in candidate list.

LSS =) Less than some designer specified value.

LEQ =) Less than or equal to some designer specified value.

EQL =) Equal to some designer specified value.

GEQ =) Greater than or equal to some designer specified value.

GTR =) Greater than some designer specified value.

MAX =) Maximum value in the candidate list.

Comparison against database values (or the computed overhead cost value when cost is

constrained)' results in a boolean (1 or 0) value indicating whether or not the condition was

met. The comparison is performed twice on the candidate list in order to determine maximum

or minimum values. In those cases, the first pass through the list serves to find the maximum

or minimum database value. The second pass actually determines the boolean for each

candidate.

At this point, each candidate has an associated list with one entry corresponding to each

constraint. Each entry in the constraint correspondence list contains the boolean indicating if

the candidate matches the constraint. The boolean corresponding to each constraint is

multiplied by the designer specified (normalized) weight for each constraint. A candidate

evaluation is the sum of the weighted booleans. Since the weights are normalized and the

individual constraint evaluations are booleans, the candidate evaluation can take on any value

in the range of 0.00 to 1.00.

The entire process can be summarized as follows: If that there are N criteria and J alternate

candidates. An evaluation of criteria i is represented by ei . If a normalized weight, wi' is

placed on each criteria i, then the evaluation of alternative j in the list of alternatives is:

E. = L~ 1 w.e.
J 1= 1 I

The candidate in the list with the maximum E. is recommended as the "best" module.J .

51

3.3.2 Synthesis

Synthesis is invoked whenever there is no "best" candidate module for a node. A

synthesized node is replaced with one or more nodes (synthesis by expansion). If synthesis

were applied to all nodes (even those with a "best" candidate), the transformation design

space would have no bound in the direction of "worse" designs. That appears to be

reasonable for an actual design space but it is not practical to allow an automated system to

search for infinities. Because of limited run time and finite memory, the implementation of

LSMS bounds the design space by only applying synthesis when necessary. This method has

no impact on the optimum end of a design space. It only limits searches in the direction of

"worse" designs. Fortunately, the optimum end of a design space is the most interesting

region when implementation of designs is the goal.

Synthesis uses the equivalence transformations (refer to Section 2.7.1) to build template

trees. The tree generation process was discussed in Section 2.7.2. In that section it was

indicated that building the tree amounted to only half of a transformation since the control,

evaluation, and installation of synthesized trees (which will be discussed here) is integral to

the process.

3.3.2.1 Synthesis Control

Synthesis is initiated when there is no device in the module database that can be used to

implement a Path Graph node.. The list of axioms is searched until an equivalence for the Path

Graph node function is found. If no equivalence is found, the node is considered to be

unimplementable. It would then be up to the designer to insert an appropriate equivalence in

the axiom database. In the more usual case, there would be several equivalences. Template

trees will be synthesized and evaluated for all equivalences that match the Path Graph node

function.

A synthesized template tree can be thought of as an independent Path Graph. Each node is

subjected to the same candidate module search and node evaluation that occurs on the

design's Path Graph. During tree node evaluation it is quite possible that no modules will be

found to implement a node. In that case, synthesis is applied recursively to the node in the

template tree. This mechanism allows template trees to be built up from successive

equivalences. Consider a design being implemented with TTL. If a two's complement

greater-than-or-equal (GEQ2C) operator were encountered, there is no TTL device that can

directly implement the function. Synthesis would build a tree representing the equivalence:

RELAT:GEQ2C *1 NOT (LSS2C $1 $2)

52

A search of the TTL database would find that the NOT operation could be implemented, but

there is still no device that could directly implement LSS2C. Synthesis would be applied

recursively and would build a subtree representing the equivalence:

RELAT:LSS2C *1(0) SUB $1 $2

A SUB (unsigned subtract) operator is available (the SN74181 ALU) in the TTL database.

Therefore, this tree would be completely implementable with TTL devices and no further

recursive synthesis would be attempted. The recursively synthesized tre.e would be identical

to a tree developed from an equivalence written as:

RELAT:GEQ2C *1 NOT (SUB $1 $2)<0)

Recursive synthesis is limited to a depth of 25 to prevent stack overflow in the PDP-10

implementation. Generally this limit would be reached only if recursive tree synthesis was

applied in very large loops (a fruitless search at best, and an error at worst). Recursive

synthesis reaching a depth of 10 or less was sufficient for all designs encountered in this

research. Another limit is placed on recursive synthesis to identify and eliminate tight loops.

If either of the last two equivalences are identical to the current equivalence, subtree

synthesis is suppressed.

At each tree or subtree, all possible equivalences are developed and evaluated. If there had

been another equivalence for LSS2C, a second subtree would have been developed and

evaluated in the example above. If there had been an additional equivalence for GEQ2C, a

tree would have been synthesized and evaluated. After all equivalences are exhausted (at

each level of recursive synthesis) to tree or subtree with the highest evaluation is selected to

replace the Path Graph node. Details of tree evaluation will be discussed in the next section.

3.3.2.2 Template Tree Evaluation

Tree evaluation develops a summary indicator for the entire tree (or subtree if synthesis was

recursively entered). Evaluation begins by performing candidate searches and evaluations on

each node of the tree. Candidate evaluation for tree nodes is identical to' candidate evaluation

for Path Graph nodes (refer to Section 3.3.1.2). Suppose that there are N nodes in a template

subtree that require modules for implementation. An evaluation of node k produces a "best"

module candidate with an evaluation factor of E The "best" candidate for a node is the one
k

.

that has the maximum Ek . The summary evaluation t for the nth template subtree is given by: n

If there are m subtrees in an template tree,

53

the evaluation for the jth template tree is given by:

T - TIm ti - n=1 n

If there are j template trees, the final evaluation (T) is given by:

T = MAXIMUM (Tj)

A product model was chosen for tree evaluation because it is necessary to distinguish

between single node and multiple node trees. If individual node evaluations were simply

summed, the result could be a number larger than 1.0. Template selection is based on the

maximum evaluation, so large values would be favored. If a sum were divided by the number

of nodes in the template tree, the resulting value would be normalized to the range 0.0 to 1.0.

Then it would not be possible to distinguish a single node tree from a multiple node tree

although the latter could be more costly to implement. If the product of individual node

evaluations is taken, the maximum value will be 1.0 (the node evaluations are all in the range

of 0.0 to 1.0). If the product is then divided by the number of nodes (N), a multiple node tree

will produce a lower value than a single node tree.

When an appropriate template tree is identified, installation of the replacement construct

occurs in three stages: node installation, node linkage, and micro-operation synthesis.

3.3.2.3 Node Installation

The template tree is walked from the root node. If a tree node is a register, operator,

multiplexor, or constant, the tree node is copied into the path graph data structure. All other

types of nodes in the template tree do not directly generate corresponding path graph nodes.

Source and reference tree nodes are used as information sources to generate links in the path

graph.

3.3.2.4 Node Linkage

The linkage process interconnects the template tree nodes that were installed in the path

graph. The actual processing methodology becomes rather involuted and will not be

discussed here. However, a few specific problems that are addressed during linkage will be

described. Template trees allow two types of inputs to register, multiplexor, or operator

nodes:

• sources refer to connections at the input boundary of the template tree

54

• references are connections between nodes in the template tree.

In the simplest case sources must be matched to the correct input link to the root node. The

destination of that link must be changed to point to the the newly installed path graph node

that corresponds to the template tree node to which the source is attached. References

require identification of both the source and destination nodes in the path graph. A link must

then be installed between those nodes. Complications arise when template trees are nested.

Sources of a nested template tree no longer refer to actual path graph links. Rather, they

refer to sources in the template to which they are nested. The linkage process must follow the

threaded trace described in Section 2.7.2. This procedure insures that the linkage parameters

are derived from the true source and the nested destination node. After all source and

internal connections have been made to the replacement path graph construct, all output

links from the root node are moved to the last node of the construct.

3.3.2.5 Micro-Operation Synthesis

After installation and linkage, the template tree is accessed one final time to synthesize a

micro-operation sequence for the structure. A root node is associated with zero or more

micro-operations and the sequence must be modified at each of those points. A root node

may be referenced by the micro-operation sequence as an operator, a source, or a

destination. Operator micro-operations are replaced with a sequence that reflects the control

flow of the template tree. The micro-operation sources to an operator become sources to the

first replacement micro-operation. Intermediate micro-operations in the replacement

sequence are chained unless a register is included in the template tree. The last replacement

micro-operation will receive the destination information from the original micro-operation. If

the root node acted as a source to micro-operations, the last replacement micro-operation is

referenced as the new source. Only registers may be destinations in the micro-operation

sequence. Registers may be installed in the path graph from a template tree. They could then

serve as destinations for existing or synthesized micro-operations. Multiplexors in a template

tree do not directly enter the micro-operation sequence, but they do cause a select micro

operation structure to be built.

After installation, linkage, and micro-operation synthesis are completed, the root node and

the template are deleted.

55

3.3.3 Automatic Transformation

The autotransform process is the kernal controlling four critical decisions that result in logic

synthesis and module selection:

• Synthesis

• Transformation

• Merged operator synthesis

• Binding (the association of selected module information to a node)

A design is processed window-by-window. Within a window, each node is subjected to a

series of tests that direct it through the appropriate transformations. these tests are

described in the following paragraphs.

3.3.3.1 Equivalence Synthesis

Synthesis is attempted only if no "best" candidate is identified for anode and proceeds as

outlined in Section 3.3.2.

3.3.3.2 Partitioning and Combining Transformations

Each node is tested to determine if it might benefit from either partitioning or combining

transformations. The test for partitioning uses the bit width of operators and registers or the

number of inputs for multiplexors as the deciding factor. The bit width or number of inputs will

be refered to as the size in the following discussion. The size of the "best" candidate module

is compared to the size of the node. If the node size is an even multiple of the module size or if

the module size is greater than the node size, partitioning is not required. If the module size is

less than the node size and is not an even multiple of the node size, the partitioning

transformation (Section 2.5) is activated to split the node.

The test for for applying the vertical join transformation requires that the nodes be

operators of the same type that are in a cascaded configuration (the output of one node is an

input to the other node). The top part may have only the output connecting it to the bottom

part. Finally, there must be a candidate module that has enough inputs to support the

combined node. If the top part has n inputs and the bottom part has m inputs, a candidate

mod ule must have at least (n + m - 1) inputs. If all of the conditions are met, the vertical join

transformation (Section 2.6.1) will be activated.

All possible pairing of operators in the design is tested to determine if they may be merged.

56

In order to qualify, a pair of operators must be in independent control structures (Le. the must

never be activated simultaneously). There must also be a device in the module set that will

perform the functions of both nodes. Finally, the nodes must share a data path. This

restriction insures that the nodes are of similar (although not necessarily identical) size. If the

conditions are satisfied, the horizontal join transformation (Section 2.6.2) will be activated.

3.3.3.3 Merged Operations

Merged operations constitute special cases that require individual responses. The lack of

generality in merged operation transformations and a persistent lack of time resulted in

incomplete implementation. As indicated in Section 2.8, these operations only impact

registers that are flagged for additional functions. That section outlined the possible

responses to the merged operations. All cases have been identified, but only the increment

and decrement have been implemented. These operations are implemented by incarnating a

functional level increment (decrement) node in the path graph. The incarnated node is routed

between the output of the register and a multiplexor collecting the inputs to the register. The

register is rewindowed and cycled through the autotransform process where the increment

(decrement) is synthesized into a form that is consistent with the modules in the database.

3.3.3.4 Binding

If there is a "best" candidate module for a node, that module's information is associated

with the node after all synthesis and. transformations are completed. The association of

information is referred to as binding the module to the node.

3.4 Conclusions

Automatic processing continues under control of the surrogate designer until the entire

design has been completed. The automatic system is fast (Appendix 0 shows that a PDP-8

can be processed for TTL in under three minutes wail-clocks time or in less than nine CPU

seconds) and complete (100% of the nodes have modules selected), but it is not yet clear how

good a job it does. A design experiment was undertaken using human designers to process

descriptions that could also be processed by SYNNER. The purpose of the experiment was to

determine if a reasonable set of transformations had been identified and to provide a sample

of designs to compare against the automatic system. The design experiment is described in

the next chapter.

SOn a DEC KL-1 0 CPU with approximately 20 other active jobs.

57

Chapter 4

Validation of Transformations

"MURPHY WAS AN OPTIMIST" -- T Shirt philosophy circa 1980

4.1 Introduction

The LSMS level of design has been explored in a manner that has stressed generality. An

effort has been made to avoid automating a "bag of designer tricks". The result has been the

definition of five basic structural transformations and a structural synthesis capability. The

resulting system is able to completely process most designs that have been encountered, but

there still are many areas of the process that are incomplete. The current implementation

operates on very localized parts of a design and it has some shortcomings in its synthesis

capabilities. Since it can completely process most designs, two questions must be answered

before much confidence can be placed in its results:

• How	 closely does the LSMS system approximate the capabilities of good
designers?

• Are there any additional transformations that would allow the system to produce
better designs?

An experiment was conceived to answer those questions. Two descriptions of digital

devices were-chosen to be processed by a group of volunteer designers. Each designer was

asked to process the two descriptions using modules from the TTL module set for one·

description and modules from the Sandia Standard Cell module set for the other description.

Constraints were placed on the final cost and delay of each design. Designers were

requested to account for every transformation that they used to arrive at their final

implementation.

58

The results of the experiment provided a series of points near the optimal end of a

cost/delay design space. Each designer described the transformations he used to arrive at .	 . .
those points.

The experimental data holds the answers to the calibration and transformation questions.

The LSMS system was used to process all of the description/module set pairs that the

designers produced. By comparing the automated designs to the experimenter's designs, it

was possible to determine how closely the LSMS system approached manual methods. Using

the audit trails the designers provided, it was possible to identify transformations that would

improve the automated performance.

The calibration will show that the automated system produces designs that compare

favorably with those done by humans. This result tends to support the choice of .

transformations proposed in Chapter 2.

4.2 Design of the Experiment

Before discussing the details of thi~ experiment and its results, a brief background will be

given which contrasts an earlier experimental approach to the current work.

4.2.1 Background

Thomas [Thomas 81] used extensive human experiments in order to validate the proposed

Register Transfer Computer Aided Design (RTCAD) model for design automation. He

conceived and ran two experiments to gather information about separate aspects of the

design process:

1. The	 physical allocator level experiment was used to measure designer

performance when implementing a specific functional description with a specific

design style and a specific module set.

2. The module independent level experiment was used to measure designer

performance in translating a behavioral hardware description to a functional logic

level.

The current design experiment has similarities to the first of those experiments. However,

there are some significant differences that make the current work unique. He had proposed a

model of the design process and used the experimental results to justify that model without

being concerned with the methods used to attain the results'. The RTCAD model included

global optimization, design style selection, and physical allocation. In the current experiment,

59

a model of the LSMS step of CMU-DA6 has been proposed (in the form of a series of

transformations and a methodology for applying them). The results of this design experiment

were used to justify the LSMS model, but because the model identifies a method to attain

similar results. the methods used by the designers were carefully monitored.

4.3 Description of·the Experiment

The experiment was conceived to use six designers, two descriptions and two module sets.

The descriptions are of a change mechanism for vending machine application and a

truncated version of the PDP-8 minicomputer. The module sets are the common 7400 series

TTL devices and the Sandia Laboratories Standard CMOS Cells for LSI implementation.

The six designers (referred to as designers "1" through "6") were CMU Electrical

Engineering students. Two (designers 4 and 5) were PhD candidates, two (designers 1 an 6)

were masters candidates and two (designers 2 and 3) were graduating seniors. All of the

designers were familiar with digital circuit design principles. All had experience designing

with TTL and two (4 and 5) had direct experience designing with the Sandia Standard Cells.

One of the designers (1) was working on the control allocation problem for CMU-DA.

The descriptions were selected to provide different implementation problems. The first

description is of a change mechanism which performs a large proportion of arithmetic and

comparisons. The ISP and the functional logic diagram (drawn from the D/M allocator path

graph) appear in Appendix C. The second description is of a minimal version of the PDP-8

minicomputer. All I/O and Operation group instructions were removed from the description

leaving the fetch/execute cycles, addressing modes, interrupt service and full descriptions of

the remaining six basic instructions. The ISP and the functional logic diagram for the

truncated PDP-8 appear in Appendix C.

Each designer was asked to transform and select modules for the two descriptions. The

experiment was conceived to be balanced by assigning three designers to each of two groups

(the "A" group and the "B" group). The "A" group was asked to select modules for the

change mechanism from the TTL module set and to select modules for the PDP-8 from the

Sandia Standard Cell module set. The "B" group was to select modules for the change

mechanism from the Sandia Standard Cells and select modules for the PDP-8 from the TTL

module set. This assignment of designers. descriptions, and module sets is depicted in Figure

6The current name of the design system that is being used to refine and implement RTCAD concepts.

60

4-1. The purpose of this "cross assignment" was to eliminate learning curves that might

cloud the results. Since each designer was to process two descriptions, he was faced with a

totally new situation (module set and description) each time.

TTL CELLS · ,. .· .
Change A B
Mechanism (1, 2, 3) (4, 5, 6)

·,----------_._----------,..
B A

Small POP8 (4, 5, 6) (1, 2, 3)

· .· .

Figu re 4-1: Design Experiment Assignment

The experiment as conceived suffered somewhat in the actual execution. Only five off the

six designers actually completed the experiment leaving ten instead of twelve processed

designs. Another designer transposed the design/cell pair groups to which he had been

assigned. He had been assigned in the "8" group but actually processed the designs as if he

had been assigned to the "A" group. The cumulative result of these problems in the

execution of the experiment left the unbalanced assignment shown in Figure 4-2.

TTL CELLS · .· .

Change A B
Mechanism 1, 2, (5)

3, 4)
·------------,-----------,. .

B A
Sma 11 POP8 (5) (1, 2,

3, 4)
· .· .

Figure 4-2: Actual Experimental Assignments

While the actual assignments are not as balanced as was desired, the results are just as

useful in most ways as they would have been from the experiment as it was designed. One

factor desired from the experiment was to determine if there were transformations not

included in SYNNER that would be useful for structural modification and module selection.

With 5/6 of the planned data available, there is an adequate sample for that purpose. The

61

other purpose of the experiment was to determine how closely SYNNER approximated

designs processed by humans. The inadvertent inc~ease in ~he sample size of the "A" group

actually increases the confidence in the results for the change/TTL and PDP-8/Sandia

designs. The corresponding reduction of the "S" group to a single data point for each design

leaves no opportunity to draw statistical conclusions for those design/module set pairs.

Preliminary results [Parker 79] of the automated CMU-DA system have shown that the D/M

allocator produced designs that were approximately 30% worse than good hand designs.

Since the objective of the experiment was to evaluate aspects of the LSMS process, it was

important to neutralize any effect of the allocator's additional 30% on the measured data. This

was accomplished in two ways:

• Designer's received	 functional logic level descriptions identical to those that
could be processed by SYNNER. The funct)onal logic level descriptions
contained the 'inappropriate design style' errors, but the errors were identical for
both the human and automatic design processing.

• Designers were restricted in the degrees of freedom they had in transforming the
designs to the class of transformations appropriate to the LSMS level. The

. restrictions were general and described the grain of the transformations that were
restricted rather than suggesting or disallowing particular transformations. The
statements of restricted classes of transformations are reproduced here from the
instructions provided to the designers:

o Permissible types of transformations are:

• Any operations that pertain to a local area of the path graph and do
not change the behavior of the design.

Operations that are not permissible include:

• Susing of data paths: Individual specifications of datapaths is a result
of using the allocator for the distributed design style. Certain
individual data paths could be combined in a bus. However, such an
optimization would cause a change in design style.

• Large	 parallel/serial transformations: Relocation of large groups of
nodes to place them in line or in parallel with other operations is not
permissible.. Such relocation is a decision that must be made by an
allocator.

62

4.4 Inst ructions to Designe rs

The designers were instructed to meet limits on the cost and delay of each design. In order

to accomplish this, measures of the data part cost and control part delay were described. In

addition, a thorough accounting of all transformations was requested. In order to clarify the

exact set of requirements placed on the designers, portions of the instructions will be

reproduced and discussed in the following paragraphs.

4.4.1 Data Part Cost

The data part cost of implementing a design is derived from the sums of the di reet cost for

each module and the ave rhead cost incurred for each module or package. In the case of

packaged devices such as the members of the TTL module set, actual dollar cost is used as

the direct cost. The overhead cost for TTL is the $3.00 per package identified by [Blakeslee

75]. For the Sandia Cells, dollar cost has no particular meaning. Instead, the module area is

used as the direct cost. The overhead cost defined to be a penalty (in area) required for

interconnect routing between cells. At the time the experiment was conducted the best value

available was a factor of 1.2 times the cell area for routing overhead. The cell overhead factor

was changed to 2.0 after the experiment was completed. The data will be reported first with

the factor of 1.2 as it was gathered from the experiment, then it will be corrected to use the

more accurate 2.0 factor. The computations of data part cost as given to the designers were:

TTL:

TTL.TOTAL.COST = (total.packages) * overhead + ~ package.cost

Where: total.packages = the total number of packages used.
package.cost the cost of each package used.
overhead $3.00

CELL:

CELL.TOTAL.COST = ~ cell .area * (1 + overhead)

Where: cell.area silicon area (in square mils)

for each cell.

overhead = 1. 2

63

4.4.2 Control Part Delay

The control part of DIM allocator produced designs is represented in the Micro-Operation

Sequence Table which describes the activation sequence of the data part (Path Graph)

nodes. Transformations on the structure of the data part may cause changes in the micro

operation sequence. The addition of controllable nodes in the data part would require that

corresponding micro-operations be added to the control part. Deletion of controllable data

part nodes would require the deletion of the corresponding micro-operations. Merging of

controllable data part nodes into multifunction devices probably would not alter the micro

operation sequence.

The control part measurements requested for each description were the number of control

words, the number of control bits, and the total delay for one execution of the longest path

through the design. The number of control words is closely related to the number of micro

operations. However, some of the micro-operations do not contribute to the word count while

others contribute more than one word. A table of countable micro-operations was provided to

the designers to help compute the final control word count.

The design delay computation requires that the longest path through the micro-operation

sequence be identified. The delay for each data part module associated with each micro

operation in the longest path must be added to the total. Multiplexors do not explicitly appear

in the micro-operation sequence, but their delay must also be added to the total.

For the purpose of the experiment, the bit width of the control words was based on the

assumption that each potentially controllable path graph node would require one bit in the

word. The potentially controllable path graph nodes are:

Registers
Memories
Multiplexors
Demultiplexors
Operators
Temporary Registers

It was also assumed that the next-state ROM address would contribute LOG 2(control.words)

to the bit width. This simplistic estimate was scrapped in the implementation of SYNNER·

(after the experiment was completed). The current approach estimates the bit width by

counting the actual maximum control line requirement for selected modules. The initial

analysis of the raw data from the experiment will be done using the method requested of the

designers. Analysis of the data that is used in comparisons to SYNNER's performance will be

done by recomputing the bit width using the actual control requirements of the selected

modules.

64

The model of a controller described to the designers was a simple ROM based state

machine that consisted of a STATE. REGISTER and a ROM. The next-state address was

described to be part of the total bit width which was identical for both the STATE.REGISTER

and the ROM. This machine is different from any of the controller models used by the Control

Allocator, but it is sufficient to generate the upper bound estimates of the number of words

and the required bit width. The upper bound estimates of controller words and bit widths are

appropriate for the LSMS level since LSMS is primarily concerned with detailed data part

transformations. The control part modi'fications dictated by data 'part transformations are

made only to keep the control information relevant to the data path structure. While the data

part is translated from one design level to another, the control information is updated at the

same level of design that it entered LSMS.

4.4.3 Design Constraints

Constraints for cost and delay were placed on each description/module set pair. Designers

were instructed to meet or exceed the constraints if possible, or make the best compromise

between cos.t and delay if the constraints could not be met. The constraints were based on

estimates derived by a trial run of the experiment (hand binding the designs) and using

available facilities in SYNNER. At the time the constraints were derived, SYNNER was not

capable of any automatic binding. It did have some operational transformations that could be

applied directly by a designer.

The constraints placed on the description/module set pairs were:

Change.Mechanism/TTL

Package + overhead cost ($3/package) less than $125.00
Delay (longest Path of the design) less than

5.5 microseconds

Change.Mechanism/Sandia

Package + overhead (1.2 * cell area) less than 110,000
Square Mils

Delay (longest path of the design) less than 5 microseconds

POPS/TTL

Package + overhead cost ($3/package) less than $130.00
Delay (longest path of the design) less than 4 microseconds

POPS/Sandia

65

Package + overhead (1.2 * cell area) less than 105,000
Square Mils

Delay (longest path of the design) less than 4 microseconds

These constraints were believed to be marginally attainable. They were selected to require

significant transformations in order that they could be met.

4.4.4 Special Conside rations

The following special considerations were identified to the designers:

• When using a TTL module set use only devices with totem pole drive. Do not use
open collector or tristate output devices. Do not use Schottky devices.

• Do not bind the array memory (MP) in the POP8 design.

• In the Sandia cell set, the width of devices is given in the data sheets. We want
the resulting area used. The height of all standard cells is 14.4 mils.

•	 In Sandia Cell designs, use only cell input and output capacitance to determine if
buffers are required. Do not attempt to account for wire or tunnel capacitance.

4.5 Analysis of Experiments

The data from the experiments will be presented three ways. Initially, the data as gathered

from the designers will be presented and discussed. Certain problems and oversights

occurred in the designer's execution of the experiment. Those problems will be discussed

and the data will be extended to provide a consistent basis for analysis. Some of the

accounting methods used by SYNNER are slightly different than the accounting methods

requested of the designers. The final presentation will place the experimental data on the

same accounting basis SYNNER uses for the purpose of comparing the hand and automated

results.

4.5.1 Data Presentations

The data is presented in tabular form. The parameters that appear in the tables are defined

below:

•	 Total Bindable Nodes - The final number Path Graph nodes that require
modules for implementation. If Path Graph nodes occur as the result of
partitioning a register or operator, only the original node (the left-part) will be
added to the bindable node count.

66

•	 Nodes Actually Bound - The number of bindable nodes that have modules
assigned.

•	 Percent Binding - Percentage of nodes actually bound.

•	 Total Packages Used - The number of packages used for the design. In the
case of the TTL module set, this number is less than or equal to the number of
modules actually used. In the case of Sandia Cells, the package and module
count is identical.

•	 Total Modules Used - The number of individual modules used to 'implement the
design. Modules are the discrete logical entities used to implement nodes of a
Path Graph. In packaged module sets, individual modules may be replicated
within individual packages.

•	 Total Spare Modules - The number of unused modules resulting from assigning
packages to implement a design.

•	 Module Utilization - The percentage of total modules used to the total modules
available.

•	 Total Power· The sum of the power required by all packages. This value is in
milliwatts for TTL implementations and microwatts for cell implementations.

•	 Control Words - The total number of micro-controller words required by the
design. The count of control words is derived directly from the Micro-Operation
Sequence Table. The resulting number should be viewed as an upper limit since
no attempt is made to model or estimate the performance of the Control Allocator.

•	 Control Word Size - The number of bits in each control word. This field
presents a problem in the following data presentations. At the time the
experiment was conducted, the designers were instructed to count one bit for
each bindable node. The rational was that each operation has an entry in the
Micro-Operation Sequence Table and it would be the task of the Control Allocator
to convert that information to a number of control lines (zero or more) for each
module. Since the time of the experiment, the module database has been
upgraded to include the actual number of control lines for each module and
SYNNER has been modified to make use of that information when accumulating
this statistic. The raw data and consistent data presented in this field will be on
the basis of the instructions to the designers. The data converted for comparison
to SYNNER performance will contain the count derived from the actual module
information. The reported number of bits should be viewed as an upper bound
since it represents fully horizontal micro-code. All packing of control words is
deferred to the Control Allocator.

•	 Controller Address - The number of bits required to address the control words:
Log 2(Control Words) (rounded up).

•	 Max Control Path - A count of the number of control words in the longest path
through the Micro-Operation Sequence. Loops are only transited once when
measuring the longest path.

•	 Max Path Delay - The sum of the module delays in the maximum con.trol path.

67

This number includes delays of multiplexors which are not explicitly mentioned in
the Micro-Operation Sequence.

•	 Raw Package Cost- The sum of the individual package costs. This figure is in
dollars for packaged module sets. It is in square mils for cell module sets.

•	 Total Package Cost - The raw package cost plus the overhead cost. Overhead
for TTL is computed at $3.00 per package. Overhead for cells was specified as an
additional 1.2 times the raw package area for the experiment. Later information
(currently used by SYNN~R) uses a cell overhead f~ctor of an additional two
times the cell area.

4.5.2 Initial Parameters

The descriptions have initial values for parameters not directly dependent on module

information. There is an initial number of "Bindable Nodes" (nodes that require modules for

implementation), "Control Words", "Control Bits" (identical to the bindable nodes by the

accounting method requested), and "Longest Path". These initial parameters for each design

are given below:

. Small pop-a:

Bindable Nodes: 17"

Control Words: 89

Control Bits: 17

Longest Path: 38

Change Mechanism:

Bindable Nod~s: 32

Control Words: 72

Control Bits: 32

Longest Path: 69

4.6 Change Mechanism Using TTL Modules

Designers 1, 2, 3, and 4 worked on the change mechanism using the TTL module set. The

next subsection will be devoted to presentation and analysis of the experimental data. The

more subjective process of determining and discussing the transformations used by the

designers will complete this section.

68

4.6.1 Data Analysis

The designers were presented with drawings of the change mechanism as the D/M

allocator produced it. They also had the path graph form of the description. The drawings did

not explicitly denote inversions because inversions are attributes of the connecting links. The

most common oversight throughout the experiment was missing an inversion. The reason for

most of the discrepancies between Bindable Nodes and Nodes Actually Bound was a

missed inversion. An inversion was considered to be properly handled if:

• A node which directly dealt with the inversion could be explicitly identified.

•	 An inversion originated from a node that was bound with an inverting output. If
non-inverting links also originated from the node, it must also have a non
inverting output.

DESIGNER	 1 2 3 4

Total Bindable Nodes: 21 31 30 29
Nodes Actually Bound: 20 25 23 25
Percent Binding: 95% 81% 77% 86%
Total Packages Used: 20 25 23 23
Tota 1 Modules Used: 31 37 39 45
Total Spare Modules: 7 4 5 8
Module Utilization: 82% 90% 89% 85%
Control Words: 67 67 68 69
Control Word Size: 20 25 23 25
Controller Address: 7 7 7 7
Max Control Path: 59 60 64 61
Max Path Delay (NS): 1107.5 1279.0 972.0 1061.0
Raw Package Cost: $ 13.12 22.36 15.43 22.87
Total Package Cost: $ 73.12 97.36 84.43 91.82

Table 4·1: Change/TTL Raw Data

In one case (Designer 1), an attempt was made to deal with the inversion but failed because

of a misapplication of DeMorgan's theorem. Designer 1 dealt with the other three inversions

using the criteria of selected modules which had inverting outputs. Designer 2 missed a link

inversion and missed two of the nodes in the description. A questionable application of one

package to three nodes makes it possible to speculate that the description would not perform

as desired. The nodes were one bit carriers (registers) in the description. The attempted

optimization used a four bit register (with common clock, clear, and preset). Unfortunately,

the description gives no hint about how the individual registers are to be loaded, so this

"optimization" was allowed but witl not be one identified as useful for general module

selection. Designer 3 missed three of the registers and all four of the inverting :inks. Designer

4 missed all inverting links.

69

Corrections were applied to each experiment such that the designs had all nodes bound

with modules. The method used was to select the lowest cost option without changing any of

the existing choices (i.e. not applying any transformations to the designs). Designer 1's

correction required a one bit inversion. A spare inverter was available, so the cost was not

changed. The module utilization was improved and the maximum path count and delay were

corrected. To correct for the unbound nodes in Designer 2's description, an extra package

was required. Several packages (inverters and registers) were required to correct the

unbound nodes left by Designers 3 and 4. The resulting corrected data appears below:

DESIGNER 1 2 3 4

Total Bindable Nodes: 21 31 30 29
Nodes Actually Bound: 21 31 30 29
Percent Binding: 100% 100% 100% 100%
Tota 1 Packages Used: 20 27 25 24
Total Modules Used: 32 43 46 49
Total Spare Modules: 6 10 10 10
Module Utilization: 85% 81% 82% 83%
Cant rol Words: 68 71 71 72
Control Word Size: 21 31 30 29
Controller Address: 7 7 7 7
Max Control Path: 60 64 67 64
Max Path Delay (NS): 1117.5 1333.0 1002.0 1091.0
Raw Package Cost: $ 13.12 22.79 17.56 23.05
Total Package Cost: $ 73.12 103.79 92.56 95.05

Table 4-2: Change/TTL - Consistent Data

In order to compare the designer's results to SYNNER's results, two changes were made to

the data. First, an accounting of the power required by the selected modules (in milliwatts)

was added to the table. Power was not one of the constraints requested of the designers, so

its inclusion provides a random point for comparison. The second change was in the method

of accounting for required control lines. The designers were instructed to count one bit

required for each bindable node. The more correct approach is to count the actual control

lines required. Although it could be argued that designers might have optimized differently

had they known that actual control lines would be counted, it appears from the data that only

SYNNER changed in relative proportion by this accounting method.

The data reported for SYNNER's work on the change mechanism was derived by requesting

that the cost and delay be minimized. These parameters are the same ones the designers

were asked to minimize.

70

DESIGNER 1 2 3 4 SYNNER

Total Bindable Nodes: 21 31 30 29 23
Nodes Actually Bound: 21 31 30 29 23
Percent Binding: 100% 100% 100% 100% 100%
Total Packages Used: 20 27 25 24 28
Total Modules Used: 32 43 46 49 50
Total Spare Modules: 6 10 10 10 5
Module Utilization: 85% 81% 82% 83% 90%
Total Power (MW): 3243 6649 5058 6958 8525
Control Words: 68 71 71 72 71
Control Word Size: 44 54 37 52 63
Controller Address: 7 7 7 7 7
Max Control Path: 60 64 67 64 68
Max Path De 1ay (NS): 1117.5 1333.0 1002.0 1091.0 1G24.0
Raw Package Cost: $ 13.12 22.79 17.56 23.05 28.07
Total Package Cost: $ 73.12 103. 79 92.56 95.05 112.07

Table 4·3: Change/TTL - SYt\INER Accounting Basis

The mean and standard deviation were computed for each of the measured categories.

Computation's were based on the population of four designers. The data was from the final

table (corrected and placed on the same accounting basis that SYNNER uses). The results of

these computations are shown in Table 4-3. The table gives the mean (x), the mean plus one

standard deviation (x + Sk)' and the mean plus two standard deviations (x + 2*sx) for the

designer values. SYNNER's performance in each measurable parameter is given in the last

column of the table. It should be noted that SYNNER's performance in all measured

categories except Control Word Size is within two standard deviations of the mean. This is

the range within which 95% of the population of designers would fall if the population was

normally distributed. One standard deviation from the mean is the range within which 68% of

the population of designers would fall. This range is more selective that the two standard

deviation limit. Only SYNNER's Max Path Delay was within one standard deviation of the

designers' mean. Since SYNNER is only marginally able to attain the two standard deviation

limit, it is clear that the system does not approach optimal designs.

- -

71

x x + sx x + 2*s x
SYNNER

Nodes Actually Bound: 27.75 32.50 37.25 23
Total Packages Used: 24 26.94 29.88 28
Total Modules Used: 42.5 49.92 57.34 50
Total Spare Modules: 9 11 13 5
Total Power (MW): 5477 7183.19 8889.38 8525
Cant rol Words: 70.5 72 .23 73.96 71
Control Word Size: 46.75 54.55 62.35 63
Controller Address: 7 7 7 7
Max Control Path: 63.75 66.62 69.49 68
Max Path Delay (NS): 1135.88 1276.27 1416.66 1024.00
Raw Package Cost: $ 19.13 23.87 28.61 28.07
Total Package Cost: $ 91.13 104.07 117.01 112.07

Table 4-4: Change/TTL - Statistics

In order to justify the assumption that the designers represented a normal distribution, a X2

goodness of fit test was applied for the two categories (Max Path Delay and Total Package

Cost) that were to be constrained during the experiment. The computation was performed

using a method described by [Bevington 69] that develops the x2 statistic using the normal

distribution then tests that hypothesis to determine to what degree it was true. The X2 for

Max Path Delay was 3.61 which corresponds to a probability (or confidence level) of

between 0.80 and 0.90 that such a value would be occur in the parent population that was

normally distributed. Since a probability of approximately 0.5 would be expected for totally

random data, the test indicates a good fit. The X2 for Total Package Cost was 3.74 which

also corresponds to a probability of between 0.80 and 0.90 that the x2 value would be

exceeded in a normally distributed parent population. Given the very small number data

points, the x2 statistics indicate that the assumption of a normal distribution is valid.

In view of the experimental objective (minimize total package cost and maximum path

delay), SYNNER's performance is remarkably good in this case. In fact, the Maximum Path

Delay from SYNNER is the second best of all the designers. The Total Package Cost from

SYNNER is the worst of all the designers but still well within the expected population of

designers with similar capabilities. The Cont rol Wo rd Size is a parameter that is not

considered during module selection.

72

4.6.2 Designer Transformations

The designers universally applied some form of the Horizontal Join transformation to both

the arithmetic operators and to the relational operators. Joining the arithmetic operators into

SN74181 ALUs not only eliminates nodes and packages directly, but it also has the side effect

of reducing the number of inputs to the multiplexor. Three of the designers joined all

arithmetic operators into a single ALU. This approach requires that one of the inputs to the

ALU have a four way multiplexor to select one of the three constants or node #6 as the input.

One of the designers (2) took the approach that operators with the same inputs should be

joined. This approach resulted in three ALUs, but it eliminated the requirement for

multiplexors on the inputs. Node #16 was reduced to a three input multiplexor. Designer 2

was the only one to merge the decrement operator (node # 134) with the SUM register (node

15). The merge transformation resulted in the selection of SN74193 cou nters to implement

node #15. All other designers used SN74174 registers without any merged operation

capability.

The most common join of relationals resulted in grouping comparators (SN7485) into two

groups according to shared inputs. The shared inputs were then multiplexed. One of the

designers used the special capabilities of SN7423 (expandable dual 4-input positive-nor gates

with strobe) and SN7425 (dual 4-input positive-nor gates with strobe) to synthesize

comparisons with constants having one or less bits true (0, 1, and 2). Use of the SN7425

appears to be acceptable, but the SN7423 appears to require an open collector drive for the

expandable inputs.

SYNNER contains a horizontal join transformation (refer to Section 2.6.2) that merges

arithmetic and relational operators. This transformation is the primary reason that SYNNER's

performance fell within the population defined by the designers. SYNNER does not have the

capability to recognize special cases of relational operations such as comparisons to zero. It

would be worthwhile to enhance the Synthesis Equivalence Language to allow specifying

transformations for such special cases. Another problem in SYNI\JERs performance occurred

as a result of the extremely local view take of the selection process. The greater than or equal

(GEQ) operators do not have a corresponding TTL database module. The SN7485

implements greater-than (GTR) and equal (EQL) with separate outputs. SYNNER recognizes

that these outputs may be ORed to form the required GEQ operation. However, the evaluation

finds that the penalty for mounting a package of OR gates exceeds the cost of implementing

the operation another way (by testing for a carry from a subtract operation). SYNNER does

check the spare module list during evaluation, but if no spare OR gates exist at the time of

evaluation, the subtract operation is specified. A more global view of requirements in the

73

design might identify the pending requirement for packages that would leave spares useful for

implementing operations.

4.7 Small PDP-8 Using Sandia Cells

Designers 1, 2, 3, and 4 selected modules for the small PDP-8 description using the Sandia

Laboratories Standard CMOS Cell module set. The data will,be presented and discussed as it

was for the change mechanism.

4.7.1 Data Analysis

The first table shows the raw data as it was extracted from the design experiments.

DESIGNER 1 2 3 4

Total Bindable Nodes: 15 15 26 19
Nodes Actually Bound: 14 13 19 18
Percent Binding: 93% 87% 73% 95%
Total Packages Used: 226 264 796 193
Total Modules Used: 226 264 796 193
Total Spare Modules: 0 0 0 0
Module Utilization: 100% 100% 100% 100%
Control Wo rd s : 75 89 79 76
Control Word Size: 14 13 19 18
Controller Address: 7 7 7 7
Max Control Path: 30 37 31 24
Max Path Delay (NS): 950.0 1360.0 1200.0 1225.0
Raw Package Cost: 25911.77 30633.12 85340.64 30651.35
Total Package Cost: 57005.89 67392.86 187749.41 67432.20

Table 4-5: Small PDP-8/Sandia Cells - Raw Data

As with the change mechanism, certain inversions were universally missed by the

designers. In addition, one of the designers missed the one bit LINK register and another

designer used a two bit compare where a twelve bit compare was required. All but one of the

designers dealt with the more obvious inversions.

Corrections were applied to the raw data to cause all nodes to be bound. As with the

change mechanism, modules were added without any additional transformations to the basic

design. The parameters from the resulting designs are shown in the table below.

74

DESIGNER 1 2 3 4

Total Bindable Nodes: 15 15 26 21
Nodes Actually Bound: 15 15 26 21
Percent Binding: 100% 100% 100% 100%
Total Packages Used: 227 266 844 209
Total Modules Used: 227 266 844 209
Total Spare Modules: 0 0 0 0
Module Utilization: 100% 100% 100% 100%
Control Words: 77 91 87 80
Control Word Size: 15 15 26 21
Controller Address: 7 7 7 7
Max Control Path: 31 38 38 25
Max Path Delay (NS): 990.0 1475.0 1350.0 1250.0
Raw Package Cost: 25967.93 30840.48 88260.96 32416.69
Total Package Cost: 57005.89 67392.86 187749.41 71316.72

Table 4-6: Small PDP-8/Sandia Cells - Consistent Data

It is obvious at this point that the Total Package Cost from Designer 3 is rather wildly

different from the more closely grouped results of the other designers. There appears to be

two reasons for Designer 3's large cost. First, in the case of two multiplexors (the two biggest

ones in the design) he got concerned about the drive capability of the select drivers from the

controller. He then chose to put buffer devices on the inputs of the multiplexors. In fact, the

addition of those buffers should have been deferred to the control allocator where they could

be put on the output of the control li.nes. The instructions to designers did not make any

recommendations on how buffers should be applied. Therefore, Designer 3's decision was

valid within the context of the experiment but it worked against his attempt to meet the cost

constraint. However, the second problem was the major contributing factor to the large area.

Designer 3 developed a four bit adder as a basic building block. He then used the adder to

implement Node #44 (ADD2C, 13 bits), Node #71 (I NCR, 13 bits), and Node #27 (ADD2C,

12 bits). All other designers combined nodes # 44 and # 71 and built add functions to exactly

13 bits rather than the 16 bits used by Designer 3. The other designers dealt with Node # 27

as an incrementer or by designing Node # 10 (PC, 12 bits) as a counter. Designer 3's

decision to use a general adder as a basic building block is certainly a valid possibility, but

once again, it worked against his attempt to meet the cost constraints.

The final transformation on design data puts the Max Path Delay on the same accounting

75

basis as SYNNER uses. As before, the Total Power parameter was added to the table.

DESIGNER 1 2 3 4 SYNNER

Total Bindable Nodes: 15 15 26 21 29
Nodes Actually Bound: 15 15 26 21 27
Percent Binding: 100% 100% 100% 100% 93%
Total Packages Used: 227 266 844 209 326
Total Modules Used: 227 266 844 209 326
Total Spare Modules: o o o o o
Module Utilization: 100% 100% 100% 100% 100%
Total Power (~W): 17820 22725 52900 20840 29170
Control Words: 76 90 86 80 98
Control Word Size: 23 14 23 14 22
Controller Address: 7 1 7 7 7
Max Control Path: 31 38 38 25 39
Max Path Delay (NS): 990.0 1475.0 1350.0 1250.0 1750.0
Raw Package Cost: 25967.93 30840.48 88260.96 32416.69 40641.84
Total Package Cost: 77903.79 92521.44 264762.88 97250.07 121925.52

Table 4-7: Small PDP-8/Sandia Cells - Synner Accounting Basis

It should be noted that SYNNER missed two nodes during automatic processing. These two

nodes were rotates. SYNNER has no capability to deal with rotates that appear in a design as

discrete nodes. It can deal with rotates that are merged operations of registers. The discrete

rotates in the small PDP-8 could be implemented by twisting the link connections to the

multiplexor. If that had been done, no additional modules would be required in the design.

Since the multiplexor already existed, no additional control bits or words would be required.

Therefore, no correction was applied to SYNNER's results.

The designers were instructed to not make any module selection for the memory in the

PDP-8 description. SYNNER makes a selection of a dummy memory that satisfies control

allocator requirements. SYNNER'S Total Bindable Nodes and Nodes Actually Bound

fields were each reduced by one to place the results on the same basis as the designers. The

dummy memory does not add any cost, but it does add two control lines to the total.

Therefore, SYNI'JER's Cont rol Wo rd Size was reduced by two from the reported value.

Designer 3's rather surprisingly large total area presents a problem for analysis and

comparison. While it represents a valid data point, it does not appear to be well grouped with

the other designers. In this case, the x2 goodness of fit test was applied first to the results of

all four designers, then it was applied using only the three apparently well grouped designers.

The x2 statistic for the Max Path Delay parameter and two degrees of freedom (four

designers) was 3.69 which corresponds to a probability of O.80-q.90 that a normal distribution

76

is appropriate. Eliminating Designer 3 from this computation gives a X2 with one degree of

freedom (three designers) as 2.64 which corresponds to a sl.ightly b~tter·0.85-0.90 probability

that the data is normally distributed. For the Max Path Delay parameter it appears that

Designer 2, not Designer 3, was the cause of the lower probability in the first case. When the

x2 statistic was computed for the Total Package Cost parameter, it was found that for four

designers (two degrees of freedom) the X2 was 2.51 which corresponds to a 0.70-0.75

probability of being normally distributed. When Designer 3 was eliminated, the X2 was 2.53

for one degree of freedom. This value corresponds to an 0.85-0.90 probability of being

normally distributed. Considering the low number of data points, the difference in

probabilities is not particularly great and either set of data could be used for comparison to

SYNNER'S results. The summary tables below do make the comparison both ways. Table 4-7

includes the data from all four designers. The mean (x) of the designer parameters is given

in the first column. The mean plus one standard deviation (which is the range within which

68% of the population would be expected) is given in the second column. The third column is

the mean plus two standard deviations (x + 2 * s). This is the upper limit of the range in

which 95% of the members of this population should fall. The last column is SYNNER'S

results.

x x + Sx x + 2*s SYNNER x

Nodes Actually Bound: 19.25 24.57 29.71 29.0
Total Packages Used: 386.50 692.43 998.36 326.0
Total Power (J..tW) : 28571.25 44915.75 61260.25 29170.0
Control Words: 83.00 89.22 95.44 98.0
Control Wo rd Si ze: 18.75 23.94 29.13 22
Controller Address: 7 7 7 7
Max Control Path: 35.5 38.82 42.13 39
Max Path Delay (NS): 1266.25 1472 .14 1678.03 1750.0
Raw Package Cost: 44371.52 73759.62 103147.72 40641.84
Total Package Cost: 133109.55 221263.91 309418.27 121925.52

Table 4-8: Small PDP-8/Sandia Cells - Statistics/Designers 1,2,3, and 4

Of the significant parameters, SYNNER is within one standard deviation for Total Power

and Total Package Cost. SYNNERis outside the sample population for Control Words

and Max Path Delay. SYNNER does not have a particularly good reduction capability.

Therefore, inverting links that are inserted as NOT nodes never get merged with devices that

have inverting outputs. NOT nodes cause countable micro-operations to be inserted into the

Micro-Operation Sequence. These micro-operations definitely add to the total Control Wo rd

count. Another problem was caused by SYNNER's synthesis of the EQL operator (Node

51). In conjunction with the change mechanism analysis it was mentioned that SYNNER

does not have the capability to identify special cases of relational operators.. The EQL

77

operator in this design makes a comparison to a constant of zero. Three of the four designers

took advantage of that by NORing the twelve bits from Node # 11 to generated the required

boolean. SYNNER used an Exclusive OR then NORed the twelve outputs. In addition to the

extra packages and extra micro-operation caused by the XOR, SYNNER synthesized the NOR

as a series of two and three input OR gates followed by a NOT which is not a particularly good

way to synthesize the NOR. The result was a chain of eight countable micro-operations (all in

the maximum control path). Three of the four designers only contributed two micro

operations at this point. The other designer contributed three micro-operations from the EQL.

Two problems contributed to the excess in Max Path Delay. The use of explicit NOT gates

mentioned earlier add a minimal increment into the delay. However, a far worse contribution

to the delay was caused by the handling of Node #27 (an adder used for incrementing) and

Node # 10 (the PC which carried a merged operation of INCREMENT). SYNNER is unable to

identify the special condition of the adder used as an increment, so a 12 bit adder was

assigned to the node. The PC (with its merged INCREMENT operation) was assigned counter

modules. Three of the four designers handled the problem either by assigning counters to PC

and eliminating the adder or by constructing special incrementers to replace the adder then

using a cheaper (and faster) register for PC. The fourth designer used an adder, but he also

used the non-counting registers for PC.

The second comparison (in the table below) gives the mean, standard deviation, x + 2 *

sx' and SYNNER's results as before. The statistics were developed using data from Designers

1,2, and 4.

x x + sx x + 2*sx SYNNER

Nodes Actua11 y Bound: 17.00 20.46 23.92 29.0
Total Packages Used: 234.0 263.14 292.28 326.0
Total Power (J.LW): 20461.67 22935.96 25410.25 29170.0
Control Words: 82.0 89.21 96.42 98.0
Control Word Size: 16.33 18.64 20.59 22
Controller Address: 7 7 7 7
Max Control Path: 31. 33 37.84 44.35 39
Max Path Delay (NS): 1238.33 1481. 04 1723.75 1750
Raw Package Cost: 29741.70 33103.56 36465.42 40641.84
Total Package Cost: 89225.10 99310.69 109396.28 121925.52

Table 4·9: Small PDP-8/Sandia Cells - Statistics/Designers 1, 2, and 4

In this case, SYNNER is outside the population in all interesting categories. The most

important parameters (Max Path Delay and Total Package Cost) are both outside the

desired two standard deviations of the mean. The major contributing factor seems to be the

adder used to increment the PC. If that 12 bit adder were eliminated from SYNNER's design,

the results would be as shown in the following table:

78

x x + sl(x + 2*sl(SYNNER

Nodes Actually Bound: 17.00 20.46 23.92 28.0
Total Packages Used: 234.0 263.14 292.28 293.0
Total Power (~W): 20461.67 22935.96 25410.25 25690.0
Control vJords: 82.0 89.21 96.42 98.0
Control Word Size: 16.33 18.64 20.59 22
Controller Address: 7 7 7 7
Max Control Path: 31.33 37.84 44.35 39
Max Path Delay (NS): 1238.33 1481. 04 1723.75 1520
Raw Package Cost: 29741. 70 33103.56 36465.42 33790.32
Total Package Cost: 89225.10 99310.69 109396.28 101370.96

Table 4-10: Small PDP-8/Sandia Cells - Statistics/SYNNER - Without Adder

From this change, the important parameters are now comfortably within the desired two

standard deviations of the mean. Most of the parameters are just slightly above one standard

deviation from the mean. Certain parameters still remain outside desired range. The control

and maximum path parameters would be further reduced if the handling of inverters were

improved and if the special case comparisons were dealt with correctly.

4.7.2 Designer Transformations

The major transformations used by the designers have already been mentioned during the

analysis of data and will be summarized here. One highly specialized (and interesting)

transformation has not been mentioned and will be discussed.

Three of the four designers used a horizontal join to eliminate one of the three

adder/incrementers required in the original design. This resulted in a significant reduction of

cell area. Designer 1 fabricated a counter from cells for the PC (Node # 10) in order to

eliminate the adder (Node #27) that was only used as an incrementer. Designers 2 and 4

each fabricated an incrementer from cells to implement the adder (Node # 27). The

incrementers were less costly than general adders.

Three of the four designers identified the sole relational operator as a special case

(compare equal to zero) and utilized a minimum logical form of testing for any bit true.

Designer 2 took special interest in reducing the multiplexors. To this end, he developed an

interesting "switchable link" that had the characteristic of inverting the data in one position or

passing the data unchanged in the other position. In fact, the switchable link is a multiplexor

with one inverting input and one non-inverting input. The contents of ~he accumulator (AC,

79

Node # 14) was originally routed five places: three as inverted data and two as uninverted

data. The data ended up at the main multiplexor inp~ts (Nod~s # 15 and # 20) in three cases.

The inverting link eliminated two of those inputs. Joining the adder and incrementer into a

single adder resulted in reducing the most costly multiplexor (Node # 15) to four inputs. A

four input multiplexor is the largest that exists in the Sandia Cell module set, so it was possible

to implement this node with modules one level deep rather than with the more costly

cascaded multiplexor design used by SYNNER.

The general classes of transformations used by the designers as a group are similar to

those available to SYNNER. The major areas that caused SYNNER problems were

identification and handling of special cases. Hopefully, structuring and applying special case

analysis to SYNNER would be a fruitful area for future research.

4.8 Change Mechanism Using Sandia Cells

At the outset qf this chapter it was mentioned that one planned portion of the balanced

design experiment failed to materialize. Only one designer from the "8" group completed the

descriptions as requested. This event leaves no chance of statistical comparisons, but it is

worthwhile to make a relative comparison of Designer 5's results against SYNNER's results.

This section will compare the results for the Change Mechanism using Sandia Cells. The next

section will compare the results of the Small PDP-8 using TTL modules.

The following table gives the comparison of measured parameters. The data has been

placed on the same accounting basis as SYNNER uses. The changes made to the raw data

80

are the same as those discussed in Section 4.6.

DESIGNER 5 SYNNER

Total Bindable Nodes: 34 32
Total Bound: 34 32
Percent Binding: 100% . 100%
Total Packages Used: 352 194
Total Modules Used: 352 194
Total Spare Modules: o o
Module Utilization: 100% 100%
Total Power (~W): 20260.00 15270.00
Control Words: 71 93
Control Word Size: 32 36
Controller Address: 7 7
Max Control Path: 63 90
Max Path Delay (NS): 4875.00 2845.00
Raw Area: 31613.56 26292.24
Total Area: 94840.68 78876.72

Ta ble 4·11: Change Mechanism/Sandia Cells - SYNNER Accounting Basis

This is a rather disconcerting result. SYNNER's results are far better than Designer 5's. It

was difficult to accept this at face value because Designer 5 is one of only two designers in

the experiment with direct experience using Sandia Cells. However, a careful analysis of his

design show two areas that caused Designer 5 to have large values for the Total A rea and

the Max Path Delay. The first problem was that the arithmetic operators were synthesized as

they occurred in the original Path Graph. While SYNNER merged six operators into one,

Designer 5 chose to leave them as six separate operators. This had the side effect of

requiring a much larger multiplexor than SYNNER's implementation. The multiplexor

contributed to the delay as well as to the total area. The second problem concerns synthesis

of the multiplexors. Designer 5 chose to encode the multiplexor select lines. Unlike the TIL

module set, Sandia Cells do not contain any multiplexors with built in decoders. Therefore,

decoders must be fabricated if it is assumed that the control allocator encodes the multiplexor

selects. SYNNER makes the assumption that the control allocator can handle unencoded

multiplexors by assigning extra bits to the control word. Obviously there is an interesting (and

unexplored) trade-off here. Designer 5's choice of encoded multiplexors might cause the

total design (including the controller) to be lower by reducing the bit widths of the control

words. However, SYNNER's choice to leave the multiplexors unencoded definitely reduces

the data part cost and delay since the gates required for decoding contribute to both the cost

and delay.

Designer 5 did the best job of anyone (or any program) in handling buffering to compensate

81

for CMOS delays that increase with capacitive loading. SYNNER dbes not consider the

buffering problem. SYNNER's design is as general as possible and the various loading

problems differ significantly with each logic family. It was decided that loading problems

could best be identified and handled by programs that translate SYNNER's output to forms

suitable for partitioning, layout, and routing for each logic family. For the purpose of

comparing Designer 5's results to SYt\It\IER's, the contributions of buffers to the area, delay,

and power were removed.

4.9 Small PDP-8 Using TTL Modules

Designer 5 was alone in completing the Small'PDP-8 using TTL modules. The comparison

of his results to SYNNER's results are presented in the table below.

DESIGNER	 5 SYNNER

Total Bindable Nodes: 17 17
Total Bound: 17 19
Percent Binding: 100% 89%
Total Packages Used: 51 53
Total Modules Used: 114 111
Total Spare Modules: 4 5
Module Utilization: 97% 96%
Total Power (MW): 7657.00 9234.00
Control Words: 95 113
Control Word Size: 35 35
Controller Address: 7 7
Max Control Path: 41 49
Max Path Delay (NS): 587.00 617.00
Raw Package Cost: $ 29.80 44.46
Total Cost: $ 182.80 203.46

Table 4-12: Small PDP-8/TTL Modules - SYNNER Accounting Basis

It can be seen that the results are relatively close together. As with the other Small PDP-8

design, SYNNER could not handle the rotate operators. This accounts for the two unbound

nodes. These nodes would not add any cost or delay to the design.

The relative similarity in the measured parameters belies the major differences in the,

designs. The most significant differences were:

• Designer 5 eliminated the adder (Node	 # 27) used to increment the PC, then he
implemented the PC (Node # 10) with a counter. As mentioned earlier, SYNNER
was unable to recognize that the adder performed the same function as the
merged increment operator in the PC. SYNNER implemented the adder and also
assigned a counter to the PC.

82

• Designer 5 eliminated the increment(Node	 # 71) and implemented the Land AC
registers (Nodes # 17 and # 14) as counters. SYNNER merged the increment
with the adjacent adder (Node #44),

4.10 Conclusions

The purpose of the design experiment was to determine how well SYNNER's performance

compared to a group of relatively good 'designers and to identify additional transformations

that could further enhance SYNNER's performance. The results from the experiment show

that SYf\INER comes quite near to the population of designers. In the Change Mechanism

design using TTL modules, SYNNER was within two standard deviations of the mean for both

the cost and delay. In the experiment using the Small PDP-8 and Sandia Standard Cells,

SYNNER was well within two standard deviations of the mean for total area when all four

designers were considered. While SY/\JNER's delay result was outside the 95% grouP. it was

only 5% above the limit. When the worst design was eliminated from that experiment,

SYNNER did not quite attain the limit for either the total area or the delay, but it was still quite

close. One transformation was identified (elimination of a redundant adder) which SYNNER

missed. Modifying SYNNER's results to reflect the effect of that transformation showed that it

would have been within two standard deviations of the mean for both the total area and the

delay if the adder had been eliminated. It should be noted that the two standard deviation limit

is quite broad (which means that designs in that range can be far from optimal). A narrower

statistical range of one standard deviation from the mean was included in the tables to show

the upper bound of the range in which 68% of the designer population would fall. SYNNER

rarely attained that range.

The two other combinations of the experiment (Change Mechanism with Sandia Cells and

Small PDP-8 with TTL) had only one designer. There was no opportunity to draw statistical

conclusions from these results, but a comparison of SYNNER's results to the lone designer's

results provided interesting contrasts. In the Change Mechanism design; SYNNER appears to

have performed better than the designer (primarily by identifying the possibility of merging

arithmetic operators). In the Small PDP-8 experiment, the designer attained a lower total cost

and delay but SYNNER was within 12% for cost and 6% for delay.

A number of specific transformations were identified that could enhance SYNNER's

performance. The interesting thing about the transformations is that they are primarily related

to special cases. Identifying an adder used as an incrementer and merging it into a counter

would have proven the most beneficial in this set of designs. Identifying a comparison to zero

would have probably been the next most important. From these results it would appear that

83

the next step for future work in this area would be developing a methodology for taking

advantage of special opportunities in designs.

The identification of transformations that could enhance the capability of the LSMS system

is quite useful. However, the major result of this chapter is that the experimental calibration

has shown SYNNER's performance using the existing set of transformations to be quite

comparable to the performance of human designers.

Five designers and a program have identified a few points in the design space of two

descriptions with two module sets. These points (with one exception) have been near the

optimum area of the experimental design space. From the onset of this research there have

been questions regarding how much latitude the structural design level would have to position

a description in the design space. There have also been questions regarding the shape of the

design space. The next chapter attempts to answer these questions.

84

85

ChapterS

Design Space Explo.ration

"When it is dark enough you can see the stars."

-- Ralph Waldo Emerson (1803-1882)

5.1 Introduction

In Chapter 4 a few points were obtained from the designers and from·SYNNER that could be .

plotted to start defining a design space. For example, the cost of all change mechanism

designs using TTL modules could be plotted against the delays for that design. The same

costs could then be plotted against the power. If enough different points were available, they

would start to identify a characteristic shape of the design space. The high cost of engaging

50 or 100 designers to generate the points has precluded obtaining actual design space

information. With SYNNER it is now possible to obtain a large number of points for various

descriptions. A single description/module set pair can be used to generate various points in

the design space by varying the constraints, the weights placed on the constraints, and the

transformations used while processing a description. The resulting points identify the

transformation design space. The transformation design space will be a subset of the

absolute design space for a given description/module set pair. There is no known method of

determining the bounds of the absolute design space. The transformation design space is

limited by the transformations available to synthesize a design. Chapter 4 showed that while

SYNNER's set of transformations is not complete, it is complete enough to approximate the

work of human designers. The transformation design space that SYNNER is able to explore

has some interesting properties which when generalized indicate that the absolute design

space may have a rather surprising shape.

Design space projections will be discussed for three constrainable parameters: cost, delay,

and power. The design spaces were generated for each of the descriptions discussed in

Chapter 4 and for a larger description of the PDP-8. A set of predictors will be derived from

86

the design space data. The predictors allow bounds to be placed on the minimum, mean, and

maximum expected values of a design using information available before processing by

SYNNER. They are useful for hand design processes as well as higher levels of automated

design systems. Application of the predictors will be demonstrated using the description of

the Manchester Mark-1.

There has been speculation [Lawson 78, Leive 77] that some type of summary information

could be extracted solely from a module set and used to guide the design style selection and

DIM allocation steps of CMU-DA. It will be demonstrated that module set summary

information alone is not well correlated to processed designs. The predictors developed in

this chapter are functions of both the module set and the designs.

5.2 The Desc riptions

Three descriptions will be used for design space exploration: the Change Mechanism, the

Small PDP-8, and a real PDP-8 processor description. The first two descriptions could be

called "toy" descriptions since their size was purposely curtailed to convenience the

designers but they each represent general classes of digital design problems. The existence

of data points generated by the designers make these descriptions attractive choices for initial

design space exploration. The larger PDP-8 description is included because its greater detail

provides a richer set of opportunities to apply constraint tradeoffs. The larger PDP-8 also

serves as a demonstration that SYNNER is able to process designs of reasonable size and

complexity.

The initial parameters for the first two designs were presented in Chapter 4 and are

reproduced below for convenience. The initial parameters for the Full PDP-8 are also

presented here.

Change Mechanism:

Bindable Nodes: 32

Control Words: 72

Longest Path: 69

Small PDP-8:

Bindable Nodes: 17

Control Words: 89

Longest Path: 38

87

Full PDP-8:

Bindable Nodes: 55

Control Words: 251

Longest Path: 58

5.3 Module Sets

The module set used for processing a design has a large impact on the resulting design

space. Not only are the cost, delay, and power parameters directly summed from values for

individual modules, but the existence or absence of functions in a module set will direct the

application of transformations or synthesis. A number of interesting statistics can be derived

from the module set itself. These statistics may be viewed as being derived from a design

comprised of exactly one node. If each device in the database is assigned to that node and

the resulting overhead cost, power, and delay are measured, a number of data points occur.

If the data points are paired three ways (cost-power, cost-delay, delay-power) three

projections of the module set space can be plotted. The module set parameters and

projections will be used for comparison to parameters and projections derived from the

designs.

The module sets used for this research were the SN74XX TTL module set and the Sandia

CMOS Cell module set. These module sets represent differences in packaging, power

requirements, and cost. TTL is packaged for insertion into etched boards. Sandia Cells are

designed to be placed (through photomask techniques) on silicon for LSI circuit

implementation. The characteristics of these module sets will be discussed in the following

sections.

5.3.1 TTL Module Set

The SN74XX module set was chosen for use in a module database because of its wide use

in implementing designs. The module database is a subset of the full SN74XX module set

marketed by Texas Instruments and other manufacturers.

Generally, devices were included in the database if they had totem-pole outputs. Open

collector and tristate devices were not used for this research. One Shottky TTL device was

included because a similar function was not available with the standard devices.

Thirty-one (31) TTL modules are included in this database. They range in complexity from

the single gate SN7400 NAND to the SN74181 ALU. A list of deVices included in the database

88

is included in Appendix E. The module set space projections for those devices are shown in

Figures 5-1a, 5-1b, and 5-1c.

A number of statistics that may be derived from the module set data. The maximum-to

minimum ratios for each axis of the module set space are the first relationships to be

discussed.

Package Cost 12.19:1

Overhead-Cost 1.57:1

Delay 33.33:1

Power 45.50:1

The package cost ranges from $0.16 to $1.95. The overhead-cost is derived by adding the·

$3.00 overhead to each package. This puts overhead-cost on' the same basis as the Total

Package Cost reported by SYNNER for all processed designs. The overhead figure

dominates the numbers and reduces the maximum-to-minimum ratio to 1.57:1. The delay ratio

is large because of the presence of the Shottky device (eliminating the Shottky device gives a

ratio of 11.11:1). The power ratio is large because the SN74181 ALU requires 455 milliwatts

while the (single module per packagefSN7430 requires only 10 milliwatts.

If a straight line is fitted to the paired points for cost, delay, and power using linear

regression, the goodness of fit of the line can be estimated by computing the correlation

factor (R 2). The results of such computations are:

Overhead-Cost:Power (CP) R2 = 0.746

Overhead-Cost:Delay (CD) R2 = 0.096

Delay:Power (DP) R2 = 0.163

It is easy to see that the Overhead-Cost and Power are highly correlated while delay is not

well correlated with either cost or power. This is not particularly surprising because the delay

at this level is a primarily a function of gate delays. Power is primarily a function of the number

of active devices which is related to the chip area. Overhead-cost is the sum of a constant for

all packages and a device cost set by several marketing agencies. It would be expected that

the final package cost would be some relatively constant percentage higher than the.

manufacturing cost. Manufacturing cost would be expected to be related to complexity (and

size) of the device. These are the same factors that increase power requirements.

A wholy different set of relationships occur in the Sandia CMOS Cell module set discussed

in the following section.

89

~	 500,.

!
~	 400
::
o

Q.

300

200

100

+
+

+
*'
++

+
'l'

.. +
+ ++
.+

++
:t:

+

+

+

+ +

O~----'-----'-----'-------'3.00 3.50 4.00 4.50 5.00
Overhead-Cost (S)

A. ITL Databook: Cost vs Power

100 +
~
~ 90
:::..
C13 ao
~
Q 70

60

50 + + +

40 + +

30 +

+

20 + +
+

+
*'+4-+10 + +

0
+

3.00 3.50 4.00 4.50 5.00
Overhead-Cost (S)

B. ITL Databook: Cost vs Delay

500
~
!	 +

~	 400
::
0
Q.	 +

300 + +

+

+
200

... ...

100 ..	 ++
+ +.. + ...

.,....
o 10 20 30 40 50 60 70 80 90 100

Delay (NS)

C. TTL Databook: Delay vs Power

Figu re 5·1: TIL Module Set Design Space Projections

90

5.3.2 Sandia CMOS Cell Module Set

The Sandia CMOS Cell module set was defined by Sandia Laboratories as a series of

functional building blocks that could be positioned and routed with computer aids. These

devices are representative of cell technologies under investigation by several organizations.

The public domain access of Sandia information and an existing CMU contacts with Sandia

Laboratories were the reasons for choosing these devices for this research.

Twenty seven (27) devices (listed in Appendix E) from the Sandia Cell library were included

in this module database. Special driver and pad termination devices were not included.

Certain special logic functions that could not be categorized were not included.

Two devices (ADD1 and ADD4) which are not Sandia devices were included in the module

database. These entries incorporate the parameters of one bit and four bit adders as if they

were built up from the other cells. Since SYNNER does not have the capability to correctly

synthesize multiple output devices, these devices were defined as database entries. The

database statistics were derived without using these fabricated devices. The data from all cell

designs have been corrected to reflect the actual number of Sandia Cells required when

either of these adders were used.

The maximum to minimum ratios for the Cell database are:

Overhead-Area 6.67:1

Delay 4.00:1

Power 13.50:1

The surprising information here is the lack of similarity between the ratios for Overhead

Area and Power. Power is not a figure included in the device descriptions published by

Sandia Laboratories. Since the devices are CMOS, the power requirements are virtually

negligible. In order to satisfy SYNNER's requirement for power information, Sandia personnel

provided a value of 10 microwatts/transistor. That figure was given as a very rough estimate

and was used without too much confidence that it reflects the actual device requirements. It

does, however, provide a figure that is useful for relative comparisons. It appears that the

area of individual transistors within the cells varies quite widely. Otherwise the

maximum/minimum ratios for area and power would be far closer together.

The correlation factors (R 2) for pairs of parameters also indicates that power and area are

somewhat independent.

91

-.. 300
V'l-
-
~

S 250 ...
0
,2 200
~ ...
Q)

150 ...
~ ...
~ ...

100 ...

50

...
0'---.......----'-----'......._
50 100 150 200 250 300 350 400

Cell Area (Square Mils)

A. Cell Databook: Area vs Power

U) 80 ...

~

~ 70-Q)

o 60
...

50

40 ... ++ ...

...
30 ++ ~

...
20L.-._.......__---'__"'--_........_---'-_---'

50 100 150 200 250 300 350 400
Cell Area (Square Mils)

B. Cell Databook: Area vs Delay

"iil 300
... --

S
~

250

e
,2 200
~~ 150

~
100

.;.... .;.

...
50

...

01.-----'--------'----'-----'---....
20 30 40 50 60 70 80

Delay (N8)

C. Cell Databook: Delay vs Power

Figu re 5- 2: Sandia Cell Database Design Space I-'rc)Jel:tl()n~

92

Overhead-Area:Power (AP) R2 = 0.571

Overhead-Area:Delay (AD) R2 0.417

Oelay:Power (DP) R2 = 0.541

The pairs including delay are far bette"r correlated than were the TTL module set pairs. This

can be attributed to the lower functionality of the Sandia Cell module set. While TTL spans

the range from SSI to MSI, Sandia Cells are strictly SSI devices. The lower functionality

implies that there are less gate delays in the cell devices than occur in the TTL devices.

The module set parameters will be compared to similar parameters derived from the designs

in the following sections and their usefulness as predictors will be explored.

5.4 Design Space Plots

The plots of design space projections will be presented for the three designs and two

module sets. These plots are grouped together at this point to give a view of the design space

before deriving and analyzing the parameters associated with the plots.

The plots were extracted from 64 separate SYNNER runs for each design/module set pair.

The constraints and transformations were varied for each run. Attempts were made to drive

the the points toward all "corners" of the design space. Certain mixtures of constraints and

transformations resulted in the same value as other mixtures so there are not necessarily 64

distinct points in each plot. The plus symbol (+) is used to denote SYNNER produced

values. The plots for the Change Mechanism and the Small PDP-8 include the points

generated by the designers for the experiment discussed in Chapter 4. Those points are

identified by the designer number (1, 2, 3, 4, or 5) to distinguish them from the" + " points.

93

The plots wi 11 be presented in the order:

Fig ure 5-3a: Change Mechanism/TTL - Overhead Cost vs. Power
Fi gu re 5-3b: Change Mechanism/TTL - Overhead Cost vs. Delay
Figure 5-3c: Change Meehan ism/TTL - Delay vs. Power

Figure 5-4a: Small PDP-8/TTL - Overhead Cost vs. Power
Figure 5-4b: Small PDP-8/TTL - Overhead Cost vs. Delay
Figure 5-4c: Small PDP-8/TTL - Delay vs. Power

Fi gu re 5-5a: Full PDP-8/TTL - Overhead Cost vs. Power
Fi gu re 5-5b: Full PDP-8/TTL - Overhead Cost vs. Delay
Figure 5-5c: Full PDP-8/TTL - Delay vs. Power

Figure 5-6a: Change Mechanism/Cell - Overhead Cost vs. Power
Figure 5-6b: Change Mechanism/Cell - Overhead Cost vs. Delay
Figure 5-6c: Change Mechanism/Cell - Delay vs. Power

Figure 5-7a: Small PDP-8/Cell - Overhead Cost vs. Power
Figure 5-7b: Small PDP-8/Cell - Overhead Cost vs. Delay
Figure 5-7c: Small PDP-8/Cell - Delay vs. Power

Figure 5-8a: Full PDP-8/Cell - Overhead Cost vs. Power
Figure 5-8b: Full PDP-8/Cell - Overhead Cost vs. Delay
Fig ure 5-8c: Full PDP-8/Cell - Delay vs. Power

An interesting result from the projections is that none of the shapes approach a hyperbolic

bound. The termination of point generation in the upper right area of each plot is due to

SYNNER's termination of searching progressively worse design spaces. Clearly, the "worse"

designs do not have a bound. Cost, power, and delay can all be made greater without limit if

more devices are added (such as pairs of back-to-back NOT gates) which do not change the

behavior of a design. SYNNER contains two limiting features which serve to keep synthesis

searches in the realm of reasonable execution time. The first feature checks for and

eliminates tight synthesis loops by determining if the same construct is being attempted

recursively. The second feature puts an arbitrary upper limit of 25 on the depth of recursion in

the synthesis process. This eliminates large loops or exceptionally long (possibly fruitless)

searches. If designs were allowed to be made progressively worse, it appears that the points

would have a roughly parabolic bound.

94

~ 25000
~+

~ ~+

+Q) 20000
+ +

:t
0
Q.
-t'Cl 15000

+
 -
~ i

+

10000 .t+
+

42+4 +

5000 3

OL-.._",--_~_""""'_--"-_--'-_---'-_---l

50 100 150 200 250 300 350 400
Total Cost ($)

A. Change/TTL - Cost vs Power

Cii' 1900
+
~

~ 1800
::0 +

+
+'* 1700

+
~ ~ 1600

+E1500 +:t
+

')(+
++ +~ 1400 +

2 +++1300 + +
~

1200
'!tl-+

1100 4

+1000 L-..---O~-""""'_--'-----'------'---"'---.I

50 100 150 200 250 300 350 400
Total Cost ($)

B. Change/TTL - Cost vs Delay

OL-..--'----'----'----'-----'
1000 1200 1400 1600 1800 2000

Maximum Delay (NS)

C. Change/TTL - Delay vs Power

Figu re 5-3: Change Mechanism/TTL Design Space Projections

~ 30000

~
Q; 25000
~

~
~ 20000

~
15000

10000

95

+
+,. +

....

+
+
+ +

+

+
,. + ...

50001----""'--.......--"""'---........---'

100 200 300 400 500 600

Total Cost ($)

A. Small PDP-8/TTL - Cost vs Power

U) 950
+ +

~ 900::.. + +
<l:I

++ + +Qi 850
Q +

E 800
+ +

::::: ++

E')(750 ++ +
<l:I ++

+
++ +I
++ ++

:i 700
+

650
+

600 5 ++
+ *'

550 L...-__'____'___--'''---_-'''---_---'

100 200 300 400 500 600
Total Cost ($)

B. Small PDP-8/TTL - Cost vs Delay

~ 30000
++:E

'

Q; 25000
+~ +0 +0. +

+ +-<l:I 20000 + ...
+

+ -
+ ~ ., +

+

15000
+ .. + + +

+ +

10000 + +
+

+ -+-+ +
-+-+ +5

5000----'-------'----"----"----'

500 600 700 800 900 1000

Maximum Delay (NS)

C. Smail PDP-8/TTL - Delay vs Power

Figu re 5·4: Small PDP-8/n-L Design Space Projections

96

~ 80000

~
~
Q)

=:
70000 ::

+
~ 60000	 +

"t - +

+

+

~

-(l) + +
+ ±

50000~	 -;. +

...

40000 ...
*....
30000

... """
-!'++ ++

20000 L....-_........_----'-__""""--_-'------"----'

400 600 800 1000 1200 1400 1600
Total Cost ($)

A. PDP-8/TTL - Cost vs Power

Ci) 3000 ...
2 ...+

';. 2800
:j:~	 +

+~ 2600	 + + +
...

++ + +E	 + + ++E2400	 + + +
+

')(+
+=2200 + +

+ +

2000
+
+ +

+ +
+ +

+ +1800	 +

+
1600l..----'---......----"--.......---'

400 600 800 1000 1200 1400 1600
Total Cost ($)

B. PDP-8/TTL - Cost vs De/ay

~ 80000

~
 +':' 70000 +
Q)

=:
+

~ 60000	 +
+

+
... +-<13	 + -	 ~ ~

50000~ +

...40000
- +

30000	 -;.

20000 '-----'-----'----------'------'
1500 1800 2100 2400 2700 3000

Maximum Delay (NS)

C. PDP-8/TTL - De/ay vs Power

Figure 5-5: Full PDP-8/TTL Design Space Projections

VI 60000--
97

<13

~ ...
(,,)

50000

~ ...
eu

40000
+
...

~

~ 30000-<13-o
.. 20000

10000'------"-----........------'

o 100000 200000 300000

Total Area (Square Mils)

A. Change/Cell- Area vs Power

U) 8000

~ +

~ 7000 +

~
+ ...

+
+

~ 6000
~

,§ 5000
)(

+
-H,. ++

+
5

+
+

~
4000 +

+ +

3000 +
+ +

2000'-------'"----........-------'

o 100000 200000 300000

Total Area (Square Mils)

B. Change/Cell- Area vs Delay

VI 60000 -- +
<13

~ 50000 ...
(,,)

+
~ 40000 ...
...
eu +
~

~ - 30000

~

~ 20000 +

+
+ ...

10000"----'-----'--------"--........----'
2000 3000 4000 5000 6000 7000 8000

Maximum Delay (NS)

C. Change/Cell- Delay vs Power

Figure 5·6: Change Mechanism/Cell Design Space Projections

98

~ 55000
3-

~ 50000

~ 45000
.~ ...*
~ 40000 Z	 -t
~ 35000
o
~ 30000
~

~ 25000
2
420000

15000 '------'-----........------'
 o 100000 200000 300000
Total Area (Square Mils)

A. Small PDP-8/Cell- Area vs Power

Ci) 2200
~

';: 2000 *"... ~~++
.,r

...

~

03
Q 1800

...

e
,§ 1600

...
...

)(

~ 1400
2

... ...
... ...

.,. ... 3

1200
4

1000

800'-----''------''''------'
o 100000 200000 300000

Total Area (Square Mils)
I

B. Small PDP-8/Cell - Area vs Delay

i:;'	 55000 -
~ 50000

~ 45000
(J

~	 40000
...
~	 35000
o
~	 30000
~

~	 25000

20000

3

......

... ...
...

.....
... ...

......

... ...
... ...
... .,.

..q

...
...."

...

4
2

15000'-----'----........---'------'

800 1200 1600 2000 2400

Maximum Delay (NS)

C. Small PDP-B/Cell - De/ay vs Power

Figu re 5- 7: Small POP-8/Cell DesIgn Space Projections

0

99

-. 110000
II)--Il]::: 100000

...
(J

0 f +

! 90000

...
~ 80000::
a.

70000
~

~

60000

:r

+

+

+

+++
+

500001..-..--....1..-----'------'-----'
200000 300000 400000 500000 600000

Total Area (Square Mils)

A. PDP-8/Cell- Area vs Power

Ci) 9000

~ +
:::..
~ 8000 +
<11 + ...
Q

+ +E +
+

::J 7000 -+- -+
+

.§ + + +
+)(

Il] -+
+:i 6000
+

+
+

+ +
5000 +

-+- + +

+

4000 '-----'-----'----'"'----.......

200000 300000 400000 500000 600000

Total Area (Square Mils)

8. PDP-8/CeJl- Area vs Delay

-. 110000 +
+

II) +--Il]
+::: 100000 +

0 +...
(J ~ + +

90000 -:.
~ ...
~ 80000 +

+

::
0 +
a.
Il] 70000 +

+

+~

+

60000 +

~
+

-+ ~

50000 ~_--'- "- __......_ ___J,

4000 5000 6000 7000 8000 9000
Maximum De/ay (NS)

c. PDP-8/CeJl- Delay vs Power

Figu re 5-8: Full PDP-8/Cell Design Space Projections

100

5.5 Design Space Shape Analysis

The general result of a parabolic bound to the design space projections is interesting and it

naturally leads to questions regarding prediction of the shape or bounds of a design space

before a design is processed. If.a set of predictors could be found to estimate the maximum,

mean, and minimum expected for the cost, delay, and power of a design, it would enable

higher levels of the design system (such as the Design Style Selector and D/M allocators) to . .
maneuver designs into the most favorable state for processing by the LSMS level. If the

spread of design space could be estimated, it might be possible to determine which

parameters (cost, delay, or power) may be independently constrained. Certain useful

predictors can be extracted from the design space studies. There are several relatipnships

that appear less promising but also deserve discussion.

5.5.1 Correlation Comparisons

The correlation factors measure the independence of pairs of constrainable parameters

(cost-power,. cost-delay, and delay-power). The correlations (R2) for data measured from the

three TTL designs are shown in Table·5-1. The mean and standard deviation for each column

is included in the table. The correlation factors for the TTL module set are reproduced in the

last row. If a pair of parameters are found to be independent, it would indicate that a final

position in the design space would respond to separate constraints on the parameters. If a

pair of parameters are correlated, it would indicate that only one of the parameters need be

constrained since the other would directly follow. The column headers for all tables relating

statistics of paired points are:

TTL Designs:

• CP - Overhead-Cost/Power

• CD - Overhead-Cost/(Maximum Path) Delay

• PO - Power/(Maximum Path) Delay

Sandia Cell Designs

• AP - Overhead-Area/Power

• AD - Overhead-Area/(Maximum Path) Delay

• PO - Power/(Maximum Path) Delay

The mean and standard deviation were computed for each column and are shown in the

fourth and fifth row.

101

CP CD DP
............ '" '" '" .
 '"

Change Mechanism: 0.969 I 0.766 I 0.679
-----------+-----------+----------

Small PDP-8: 0.880 I 0.670 I 0.582
-----------+-----------+----------

Full PDP-8: 0.876 I 0.403 I 0.427
===========+===========+===========

Mean 0.908 I 0.613 I 0.563
- - - - - + - - - - - + - - - - -

Standard Deviation 0.053 I 0.188 I 0.127
===========+===========+===========

TTL Module Set: 0.746 I 0.096 I 0.163
................ '" .. '"

Table 5-1: TTL Designs - Correlation (R 2) Factors

The uniformity of the correlation factors for the CP column is possibly the most interesting

feature in Table 5-1. The CP correlation factor for the TTL module set taken alone is

somewhat lower than for any of the designs but it is high enough to indicate a reasonable

correlation of cost and power. Modules selected for these designs are more highly correlated

in cost and power than randomly selected modules would be. This trend is continued for the

cell designs (shown in Table 5-2).

AP AD DP
...

Change Mechanism: 0.975 I 0.154 I 0.263
-----------+-----------+----------

Small PDP-8: 0.740 I 0.179 I 0.007
-----------+-----------+----------

Full PDP-8: 0.743 I 0.090 I 0.000
===========+===========+===========

Mean 0.819 I 0.141 0.090
- - - - - + - - - - - + - - - -

Standard Deviation 0.135 I 0.046 I 0.150
===========+===========+===========

Cell Module Set: 0.571 I 0.417 I 0.541
...... '"

Table 5-2: Cell Designs - Correlation (R2) Factors

Cost and power are measurements are summed for all packages used in a design. The

maximum path delay measurement does not reflect the entire design. It is the sum of the

delays associated with the longest possible execution path through the micro-operation

sequence for the design. It is interesting that both data pairs which include the maximum path

102

delay measurement (CD and DP) show relatively high correlation factors. The TTL module set

R2 factors indicate that these pairs are almost totally independent. The corresponding (AD

and DP) columns for the cell designs (Table 5-2) show a reverse trend. The correlation

factors for the designs are actually lower than for the module set. Because the delay

measurements are a function of the control structure of a design, correlation factors including

delay would be expected to be rather random. However, the opposite trends for the two

module sets begs for an explanation since the same designs are involved.

The difference in the module sets is related to the complexity of logic functions represented.

TTL ranges from SSI through MSI functions. The delay through the MSI modules is strictly a

function of their logic design (gate delays and feed.back paths) while the power (and

apparently the cost) increase with the size of the device. Therefore, the delay would not be

expected to be well correlated with cost or power. In the Sandia Cell module set, there are

only SSI devices. Most of the devices only have single gate delays. The most complex

devices are the counter registers which involve several gate delays and feedback. However,

there are no modules that approach the complexity of the large multiplexors or ALUs of the

TTL module set. Since the majority of devices in the Sandia Cell module set have a low

number of gate delays, a higher correlation would be expected between area, power, and

delay. Compare the module set space plots of delay versus power for TTL (Figure 5-1c) and

Sandia Cells (Figure 5-2c). The delay versus power data points of the TTL module set are

rather randomly distributed. The same data points for the Sandia Cell module set indicate that

the delays fall into distinct lines at five nanosecond intervals with the majority being grouped

at 30, 40, 50, and 75 nanoseconds. The problem then appears to be related to the distribution

in the module sets. The result would be that the module set correlation factors (R2) are simply

not good predictors for any relationships involving delay although they might be applied to

cost and power which are both related to module count.

Correlations extracted from the module sets do not seem to correspond to correlations

extracted from the design space for either cost-delay or delay-power parameter pairs. The

correlation correspondence for the cost-power parameter pair is not especially crisp either. It

appears to be more accurate to draw conclusions from the information extracted from the

processed designs. This differs from the earlier speculation that summarized module set

information would be sufficient to characterized a design. Cost and power are so highly

correlated for designs processed with TTL (0.908 mean for the three designs) that either

parameter may be constrained and the other parameter will follow that constraint. Pairing

either cost or power with delay results in moderate correlation. This indicates that constraints

placed on delay are moderately dependent on constrained cost or power. Designs processed

using Sandia Cells also show rather high correlation between cost and power (0.819 mean for

103

the three designs). Delay is almost totally independent of either cost or power when Sandia

Cells are used.

A different view of the data will be obtained in the next section by analyzing the ratios of the

maximum and minimum points for each parameter. These maximum-to-minimum ratios are

interesting in their own right, but they are also necessary for developing the maximum and

minimum predictors in Section 5.5.4.

5.5.2 Maximum to Minimum Ratios

If the shape of each design space projection is taken to be roughly parabolic, maximum

minimum ratios would not occur because the design space would not have an upper bound.

SYNNER closes the search space as a practical feature. which causes the design space plots

appear elliptic rather than parabolic. The ratios of maximum-to-minimum points for each axis

(cost, delay, and power) is a measure of the range in which SYNNER is allowed to manipulate

designs.

Figures 5-3 and 5-4 summarize the maximum-to-minimum ratios for designs processed with

the TTL and Sandia Cell module sets respectively. The mean and standard deviation are

computed for the cost, delay, and power columns and are displayed as the fourth and fifth

rows in the table. The last row in each table reproduces the module set maximum-to-minimum

ratios developed in Section 5.3 for comparison to values extracted from the designs.

Cost Del ay Power
..

Change Mechanism: 3.23 I 1.82 I 3.99 I
-----------+-----------+-----------1

Small PDP-8: 3.17 I 1.611 3.521
-----------+-----------+-----------1

Full PDP-8: 3.02 1 1.76 I 3.13 I
===========+===========+===========1

Mean 3.14 1 1.73 I 3.55 I
- - - - - + - - - - - + - - - - - I

Standard Deviation 0.11 1 0.11 1 0.43 1
===========+===========+===========1

TTL Module Set: 1.57 1 33.33 I 45.50 I
..
 ..

Table 5-3: TTL Designs - Maximum/Minimum Ratios (MMR)

The mean of the cost maximum-to-minimum ratios is 3.14 to 1 for the three designs

processed with the TTL module set. The clustering of these numbers is quite good (the

104

standard deviation is seen to be 0.11). Therefore, it appears that the mean value is a fairly

accurate representation of the cost maximum-to-minimum ratios for any of these designs.

Delay and power are also well grouped. The mean value of the delay maximum-to-minimum

ratios is 1.73 to 1 which is significantly different from the cost ratio. This indicates that

synthesis of control steps in the longest control path is not proportional to synthesis of data

part nodes for TTL. That is not particularly surprising because MSI modules such as

comparators, adders, or ALUs which directly implement data part nodes (without any

additional control steps) are often more expensive than the mean cost of the module set.

However, the SSI module that may be used (under different constraints) to implement complex

functions are often less expensive than the module set mean cost and generally require the

addition of one control step for each synthesized node. The maximum-to-minimum ratio for

power is 3.55 to 1 which is the largest ratios of the three parameters. It is similar to the ratio

for cost. This reinforces the conclusion that cost and power are highly correlated. The

module set maximum-to-minimum ratios shown in the last row (and discussed in Section

5.3.1) are not similar to the ratios for the designs. The cost ratio is damped by the $3.00

overhead included before computation. The actual package costs (excluding the $3.00

overhead) have a ratio of 12.19 to 1. Delay and power for the module set each have large

maximum-to-minimum ratios but these occur because of unique points at the extreme range.

The SN74181 ALU requires 455 milliwatts of power. The next closest device (the SN74191)

uses 305 milliwatts. Figure 5-1 c shows the distributions of delay and power for the TTL

module set.

Al'ea . Delay Powel'
 ..

Change Mechanism: 3.63 I 2.80 I 3.56 I

-----------+-----------+-----------1
Small PDP-8: 1.79 I 1.91 I 1.60 I

-----------+-----------+-----------1
Full PDP-8: 2.10 I 1.94 I 1.99 I

===========+===========+===========1
Mean 2.51 I 2.22 I 2.37 I

- - - - - + - - - - - + - - - - - I
Standal'd Deviation 0.99 I 0.51 I 1.05 I

===========+===========+===========1
Cell Module Set: 6.67 I 4.00 I 13.50 I

... 10 •••

• •• • • • • • • • • • .. IO .

Table 5-4: Cell Designs - Maximum/Minimum Ratios (MMR)

Table 5-4 shows the maximum-to-minimum measurements for the Sandia Cell module set.

The results differ from the TTL case.' All of the mean ratios are in the neighborhood of 2.4 to

1. SYNNER appears to have less range in the manipulation of cell designs than it had for TTL

designs. The standard deviations indicate that the results are less uniform for cells than they

105

were for TTL. In the case of the change mechanism, the maximum-to-minimum ratio for area

was larger than any cost ratio for TTL designs. This can only be a reflection on the

exceptionally high proportion of arithmetic operators in that rather limited design and it shows

that SYNNER is able to exercise a wide range of options in synthesizing arithmetic operators.

Designs that are more homogeneous (such as the large PDP-8) approach the mean value of

SYNNER's capability.

The mean maximum-to-minimum ratio for delay in cell designs'is similar to the mean ratios

for cost and power. This would seem to be reasonable since there is an absence of MSI

devices in the Sandia Cell module set. Complex functions must synthesized from the existing

SSI devices, and those devices usually add one c.ontrol step per synthesized path graph node.

As in the case of the TTL module set, the maximum-to-minimum values for the Sandia Cell

module set do not seem to reflect any of the trends shown for actual designs. This result is

important because it indicates that summarized module set information may not reflect the

trends found in processed designs.

The three designs used in this research have produced well grouped maximum-to-minimum

ratios for cost, delay, and power. Section 5.5.4 will make use of these ratios and the

expressions developed in the next section to derive numeric predictors for the maximum and

minimum expected cost, delay, and power of arbitrary designs.

5.5.3 Predictor Development

In this section expressions will be derived for predictors of estimated bounds on cost, delay,

and power for arbitrary designs. Numeric values will be evaluated from the expressions in

Section 5.5.4. Predictions for arbitrary designs can be made by multiplying the numeric

predictors by parameters than can be extracted from designs at the register transfer or

functional level descriptions.

Cost (or area) and power values are summed over an entire design. They are functions of

the number of packages used in a design. Unfortunately, the number of packages is not

available until after a design has been processed at the LSMS level. However, cost and power

can be related to the number of bindable nodes and the bit width of the major data path. Both

of those parameters have values in the earliest forms of description. Delay is related to the

initial number of control words in the longest control path.

Bindable nodes are path graph (or schematic) entities that will require assignment of

106

modules to implement the design. Registers and operators are examples of bindable nodes.

Constants and links are examples of nodes that do not require modules for implementation.
. . .

The major data path bit width is not always so clear. For example, should this parameter be

twelve (12) bits in the PDP-8, or should it be thirteen (13) bits? A twelve bit data path agrees

with the memory and the Accumulator bit widths but a thirteen bit data path agrees with some

of the operators and the combined Link!Accumulator bit widths. The approach taken here

was to count the data path links of each bit width in the design. The number of links was

multiplied by its bit width and the maximum value was selected. The PDP-8s both have 12 bit

data paths by this process.

It will be helpful to define a few symbols that can be used in the derivation of expressions for

the predictors. The attributes that can be extracted from descriptions will be called:

N Initial number of bindable nodes.

B Major data path bit width.

L Initial number of control words in the

longest control path.

The mean cost, delay, and power values extracted from a number of processed designs will

be named:

Xc Mean Measured Cost.
x

d
Mean Measured Delay.

X Mean Measured Power. p

The total cost and power of a design are proportional to the number of packages used to

implement the design. The total number of packages required is proportional to the number

of path graph nodes that require modules and to the bit width of those nodes. The major data

path bit width of a design is used as an estimate of node bit width. If the mean measured cost

and power parameters (xc and xp) are normalized by the product of the initial number of

bindable nodes (N) and the major data path bit width, the result is:

X = xc!(B * N) Normalized Design Cost.cn

Xpn xp/(B * N) Normal ized Design Power.

Delay is proportional to the number of control words in the maximum path. The initial

number of control words in the maximum path of a design is the estimate used to normalize

the mean design delay:

Normalized Design Delay.

These normalized parameters have units that depend on the module set used to implement

the design:

107

For TTL:

X Dollars per (bindable-node * major-data-path-bit-width)
cn
Nanoseconds per maximum-control-path-control-wordxdn

xpn Milliwatts per (bindable-node * major-data-path-bit-width)

For Cells:

X Square-Mils per (bindable-node * major-data-path-bit-width)
cn
Nanoseconds per maximum-control-path-control-word
xdn

x Microwatts per (bindable-node * major-data-path-bit-width)
pn

The general symbol used to refer to any of the preceding normalized parameters is:

The general names for cost, delay, and power predictors will be:

Xc Cost predictor.
Xd Delay predictor.
Xp Power predictor.

Xn Any of: Xc' Xd, or Xp'

Predictors for the mean values (center of the design space) can be computed by taking the

means of the normalized parameters. If the symbol X = is designated to stand for the mean
n

predictor for any of cost, delay, or power, then:

A mean predictor can be considered to be the average value of the maximum and the

minimum predictor:

X = = (X + + X -)/2 (5.1)n n n

The maximum-to-minimum ratio can be defined as:

MMR = X + IX .
n n

From those relationships, the expressions for computing the minimum and maximum

predictors can be isolated:

X - = (2 * Xn=)/(MMR + 1) (5.2)
n

X + = MMR * X· (5.3)
n n

The measured maximum-to-minimum ratios (MMRs) will be used to develop X ' and X + .
n n

108

Those expressions for X =, X -, and X + are reasonable, but not exact predictors. It is n n n
possible to extend the range systematically by including the standard deviations with the

various parameters. If all standard deviations are included, the bound area is so large that it

does not provide much information. After several attempts get a better prediction of the

actual data points, the predictors as derived appear to be as good or better than any of

modified predictors. Numeric predictors will be derived from the equations as they stand.

5.5.4 Numeric Predictors

The equations developed in the last section will be applied to measurements taken from the

three designs. Separate predictors will be developed for the TTL and Sandia Cell module

sets.

Table 5-5 lists the N, B, and L factors. These values were derived directly from functional

level path graphs produced by the distributed DIM allocator. The first row for each design

contains the three parameters. The second row for each design (labeled "Factors") shows

the computations for the N * B factor and reproduces the L factor.

Bindable Major Data Max Control
Nodes (N) Bits (B) Path Steps (L)
..
 " ..

Change Mechanism: 32 I 5 I 69
- - - - - + - - - - - + - - - -

Factors 32 * 5 = 160 I 69
-----------+-----------+----------

Sma11 PDP-B: 17 I 12 I 38
- - - - - + - - - - - + - - - -

Factors 17 • 12 = 204 I 38
-----------+-----------+----------

Full PDP-8: 55 I 12 I 58
- - - - - + - - - - - + - - - -

Factors 55 * 12 = 660 I 58
..
 ..

Table 5-5: Designs Normalizing Factors

Table 5-6 summarizes the mean value of the cost, delay, and power measurements for the

three designs processed using TTL modules. The values were computed by taking the mean

of each parameter from the data produced by the 64 SYNNER runs that were used to plot the

design space projections of Figures 5-3, 5-4, and 5-5.

109

Cost($) Delay(ns) PQwer(mW)

•••••• ~~ •••••••••• ~ d. : •••••••••~p•••••• " " " "" ..
Change Mechanism: 1 190.15 I 1399.75 I 12109.09 I

\-----------+-----------+-----------1
Small PDP-8: 1 317.47 I 757.50 I 15364.28 1

1-----------+-----------+-----------1
Full PDP-8: I 854.06 1 2310.19 1 43911.22 1

..
 ..

Table 5-6: TTL Designs ~ Measured Mean Values

The mean measured values are normalized by the appropriate (B • N) or (L) factors and the

results are tabulated in Table 5-7. For example, dividing the change mechanism cost

($190.15) by the change mechanism B • N factor gives the value (1.19) shown in Table 5-7.

The mean of the normalized values is then determined. Those values are the respective X =
n

predictors (Equation (5.1» for TTL designs.

Cost De 1ay Powe r

••••• ~~n••••••••••X.d•n••••••••• ~p~
Change Mechanism: 1 1.19 I 20.29 1 75.68

1-----------+-----------+----------
Small PDP-8: I 1.56 I 19.93 I 75.32

1-----------+-----------+----------
Full PDP-8: I 1.29 I 39.83 1 66.53

1===========+===========+===========
Mean (Normalized) I

I - -
1.35

- - -
\
+ - -

26.68
- - -

I
+ - -

72.51
- - -

Standard Deviation 1 0.19 I 11.39 I 5.18
.. ..

Ta ble 5-7: TTL Designs - Mean Predictors (X =)n

The development for cell implemented designs is totally analogous to the preceding

development for TTL designs. Table 5-8 summarizes the mean values of the measured

110

parameters.

Area Delay Power

••••• ~~ •••••••••• ~d••••.••••••~p•••••••.
Change Mechanism: I 150037.70 I 5053.98 I 28460.00 I

1-----------+-----------+-----------1
Sm a 11 PDP - 8 : 1 15 8 798 . {) 0 I 1731. 17 I 35 045 . 6 3 I

\-----------+-----------+-----------\
Full PDP-8: 1382366.70 I 6355.39 I 78724.06 I

..

Table 5-8: Cell Designs - Mean Measured Values

Table 5-9 gives the results of dividing the entries in Table 5-8 by the appropriate design

factors from Table 5-5. The mean of the columns results in the Sandia Cell X = predictors.n

Area Delay Power

•••• ~~n••••••••••~d.n ~p~
Change Mechanism: 937.74 I 73.25 I 177.88

-----------+-----------+----------
Small PDP-8: 778.42 I 45.56 I 171. 79

-----------+-----------+----------
Full PDP-8: 579.34 I 109.58 I 119.28

===========+===========+===========
Mean (Normal ized) 765.17 I 76.13 I 156.32

- - - - - + - - - - - + - - - - -
Standard Deviation 179.5~ 1 32.11 I 32.22

.................................. 10 .
• .. 10 10 .

Table 5-9: Cell Designs - Mean Predictors (X =)n

Tables 5-10 and 5-11 summarize the minimum, mean, and maximum predictors determined

by applying Equations (5.2) and (5.3). For example, the TTL maximum-to-minimum ratio for

delay (from Table 5-3) is 1.73. The X
d

= value from Table 5-7 is 26.68. Applying equation (5.2)

using those values, the X
d

' entry for Table 5-10 is found to be:

X - = (2 * 26.68)/(1.73 + 1) = 19.55
d

This value is the minimum predictor for delay in TTL designs and is entered in the first row and

111

second column in the table.

Cost Delay Power

••••• ~: •••••••••• ~d•••••••••••Xp
Xn (Min i mum) : 1 0.65 1 19.55 1 31.87 I

1-----------+-----------+-----------1
x

n
= (Mean): I 1.35 I 26.68 1 72.51 I

1-----------+-----------+-----------1
X

n
+ (Maximum): 1 2.05 I 33.81 I '113.15 I

..
 ..

Table 5·10: TTL Designs - Predictors

Area Delay Power

••••• ~: •••••••••• ~d•••••••••••Xp . ..
Xn- (Min i mum) : I 435.99 I 47.29 I 92.77 1

1-----------+-----------+-----------\
X

n
= (Mean): I 765.17 I 76.13 I 156.32 1

1-----------+-----------+-----------\
X

n
+ (Max imum): I 1094.35 1 104.97 I 219.87 I

..
 ..

Table 5·11: Cell Designs - Predictors

The predictors have the following units:

For TTL:

Xc Dollars per (bindable-node * major-data-path-bit-width)

X Nanoseconds per maximum-control-path-control-word

X

p

d
Milliwatts per (bindable-node * major-data-path-bit-width)

For Cells:

Xc Square-Mils per (bindable-node * major-data-path-bit-width)

X Nanoseconds per maximum-control-path-control~word

X
d

Microwatts per (bindable-node * major-data-path-bit-width)
p

The method of using these predictors will be demonstrated in the next section where the.

predicted and measured design space projections are described.

112

5.6 Predicting a Fourth Design

In order to get some indication of how well the predictors work, they were applied to the

Manchester Mark-1 7. From the viewpoint of this research, the most interesting aspect of the

Mark-1 is its 32 bit major data path bit width. The designs used to derive the predictors all had

major data path bit widths of 12 bits or less. If the predictions seem reasonable for a device

with data paths three times the size of the other designs it would indicate that the predictors . .
are fairly general. Other considerations such as the ratio of registers to operators in a design

could make the predictions even more accurate.

The first step in applying the predictors is the tabulation of the N, B, and L values for the

Mark-1.

Bindable Major Data Max Control
Nodes (N) Bits (B) Path Steps (L)

..

Change Mechan ism: I 16 I 32 I 16 I

I - - ~ - - + - - - - - + - - - - - I
Factors I 16 * 32 = 512 I 16 I

..
 ..

Ta ble 5·12: Mark-1 Normalizing Factors

The predictions are computed using the following relationships:

Pc Cost (a rea) prediction.

P

d
Del ay prediction.

Pp Power prediction.

X ? Any of X - X = or X +
n n • n . n

P ? Any of P P = or P + n .

P
c

? = X
c

? B • N

n n · n

*

P ? X ? • L
d d

P ? X ? B • N p p *

For example, to predict the maximum expected power for a cell implementation of the Mark

1:

X + = 219.87 (from Table 5-11)p

7the ISP description is included in Appendix C

113

B * N = 512 (from Table 5-12)

P + = 219.87 * 512 = 112573.44 microwatts
p

That prediCted maximum power value for the Mark-1 implemented with Sandia Cells

compares favorably with the measured maximum of 108600.00 microwatts.

Tables 5-13 and 5-14 summarize the resulting predictions. Numbers shown in parenthesis

are the values measured from processing the Mark-1 with 64 different sets of constraints.

Cost Del ay Power
..

Minimum: 332.80 312.73 I 16317.44
I (375.12) 1	 (348.00) 1 (15952.00)
1-------------+-------------+------------

Mean:	 I 691.20 1 426.88 I 37125.12
1 (746.76) I (500.38) 1 (37214.84)
1-------------+-------------+------------

Maximum:	 11049.60 I 541.03 1 57932.80
I (1179.36) 1 (624.00) I (60700.00)
..
 ,.	 ..

Table 5·13: Mark-1 - TTL Predictions

Area Del ay Power
..

Minimum: 223226.88 756.64 I 47498.24
I (286938.70) 1 (690.00) I (50820.00)
1-------------+-------------+------------

Mean: I 391767.04 I 1218.08 1 80035.84
I (409513.50) I (1246.25) 1 (76374.69)
1-------------+-------------+------------

Maximum: 1 560307.20 1 1679.52 I 112573.44
I (606871.40) I (1660.00) I (108600.00)
.. ..

Table 5-14: Mark-1 - Cell Predictions

Figures 5-9 and 5-10 show plots of the measured design space projections and the

computed predictions. Predictions are shown as dashed Ilnes.

The results appear to be quite reasonable. Many of the predictions are within 5% of the

measured values8 . All but the minimum cost for the cell design are within 15% of the

measured values. The minimum cost for the cell design is approximately 22% from the

measured minimum.

8Absolute percent difference· it has no bearing on whether the point is inside or outside the prediction box

114

The plots show that the Mark-1 with TTL modules tended to have clusters of design points.

Since several of the points fall outside the box defined by the predictions, two things should

be considered:

• The majority of points falling outside of the	 predictions are toward the "worse"
(slower, more expensive) end of the design space.

• It is easy to make the predictions more liberal by including some factor such as
the standard deviations.

The predictions for the Mark-1 look better in the plots for cell implementations than in the

plots for TTL implementations. There was less tendency toward clustering with the cells.

The major result from this demonstration is that the predictors appear to give a useful set of

bounds for the expected design space using items that can be measured from a description at

a very early stage of the design process. In the larger CMU-DA context, it can quickly be

decided whether to continue processing if the designer's constraints fall within the bounds or

to refer the design back to higher levels if the target has been missed.

Since the design space information is available for a fourth design, it will be used to refine

the predictors.

5.6.1 The Best Predictors

The previous section showed how the Mark-1 design space could be predicted using the

values derived from three designs. The Mark-1 information can be included with that of the

other designs to refine the predictors: The resulting values are given in Table 5-15 for TTL

designs and in Table 5-16 for cell designs.

Xc Xd X p
Cost Delay Power

: : : : : ~ ~ : : : : : : : : : : ~ d: : : : : : : : : : :Xl: : : :.: : :
x - (Minimum) : I 0.67 I 20.24 I 30.75 I n	 1-----------+-----------+-----------1

= X (Mean): I 1.38 1 27.83 I 72.56 I n 1-----------+-----------+-----------1
X + (Max imum): I 2.09 I 35.42 I 114.37 I

n .. ""
 ..

Table 5-15: TTL Designs - Final Predictors

115

§' 70000

~ 60000 ...
Ql

5 50000
Q.-~ 40000

~
30000

20000

10000

+ +.
1- - - - - - - - - -;- - - - - - - - - I

I	 I + + I

I +t +
I
,+

,	 I 'I----------r--------- l
,

,	 , r

, ,* • .,. I I
I 4r' I I
, I I

I ++	 I I

I .r + -+ -+	 I :

I~ ~_---~----------

Ol.---.r....---"-----"'----"'------'
200 400 600 800 1000 1200

Total Cost ($)

A. Mark1 /TTL - Cost vs Power

Ci) 700

~
::...
~ 600

. +

+

Q3
Q

-.;.- - -..,.... - - - - - - - - - - - - - .:r_ - I
I 1'* +

+

I -+ I I§ 500
r I I

,§ I I I

I -+ I I1__+ .+;t' 1 - - - _I><
I r '~ 400 I r I

I t+ I I

I -+-+-+ I I

~----------~----------~300

200 L.-__-'--__........__.........__---'-__---'

200 400 600 800 1000 1200
Total Cost ($)

B. Mark1 /TTL - Cost vs Delay

§' 70000

~ 60000 +;- - - - - ; - - - - -~
+

Ql

, +~
I I +'t
, Ici: 50000

, + + , -~ ,
, ,~ 40000 ~ I J

, ,
: I I

30000 ++: -TT~
I ,
, ,

20000 I (! +
~

II £+

10000L- ----''-- ---' ----'

200 400 600 800
Maximum Delay (NS)

C. Mark1 /TTL - Delay vs Power

Figu re 5-9: Mark-1 /TTL Design Space and Predictions

0

116

-.. 120000

-~ 110000
~
... 100000
(J

-~ 90000
...
Q)

80000~

~ - ·70000
~

60000~

50000

I - - - - - - - 1- - - - - - - ,

I , I

I I

I -I- I -I
I I

I'" -+- I

-+-: -+- :
+

I +
, I I

,- - - - - - - 1= - - - - - -.,
I .,. ~ I

I I I
I .,

I

+ + I
I

,I

+
 I

400001..----.......----""'"--------'

200000 400000 600000 800000

Total Area (Square Mils)

A. Mark 1 /Cell- Cost vs Power

Ci) 1800

~ ,- - -- --- r - - -+ - -,
~ 1600 " + I-+-:

1+
Qi I I I

Q ,-+--+- r+ I
+ I1400E I

I
~ I

E 1 - - i;. - - - _, - I

')(1200 I I +
I I

~ I + I
I I1000 I ,+
I-+--+ I

+ I '
I I I

800 ' ~-_-t-_-~

+

6001..-------'---------'-------l
200000 400000 600000 800000

Total Area (Square Mils)

B. Mark1 /Cell- Cost vs Delay

-.. 120000
~- 110000
~
o... 100000
(J

~ 90000
...
Q)

80000~

~ 70000

60000

50000

,- - - - - - - - - - T - - - - - - - - - -!

: -+- I ,

I I

: -+-.. I I
I I

I I -+- ~
I I I
I I .. I

, I

,.. I I

~ - - - - - - - - - -t- - - - - - - - - -.....:j

-+- I I
I I I

..;. + II

: I I

I -+- I I

I I:+
I I I

I + I

----------~----------

400001..---'------'-----'--""'"----"-----'
600 800 1000 1200 1400 1600 1800

Maximum Delay (NS)

C. Mark1 /Cell- Delay vs Power

Figure 5-10: Mark-1/Cell Design Space and Predictions

117

Xc Xd Xp
Area Delay Power

••••• ~~ ••••••••••~~ ••••••••• •Xp .
'" ..

X - (Minimum): 1 453.86 I 46.83 I 93.09 In 1-----------+-----------+-----------1
X = (Mean): I 773.83 1 76.57 I 154.53 I n 1-----------+-----------+-----------1
X/ (Maximum): 1 1093.80 1 106.31 1 215.97 I

............................. '" ~ ..
 ,. .. '" ..

Table 5-16: Cell Designs- Final Predictors

Comparing these values with the numbers in Tables 5-10 and 5-11 it can be seen that slight

modifications occurred. This refinement process could (and should) be extended by

including measurements for more designs as the information becomes available.

Within CMU-DA, it is expected that the predictors would be most useful at the Design Style

Selection level. In the "master plan" it is envisioned that Design Style Selection will be tasked

with deciding on the appropriate DIM allocator and the appropriate module set for

implementation. The implication is that there would be several DIM allocators available and

more than the two module sets used here. For example, the RCA CMOS module set might be

available in addition to TTL for packaged design implementations. There might be several

choices of cell module sets for LSI implementation. The various cell module sets would reflect

differences in technology might allow (for example) trading speed for power.

At the DIM allocator level, the predictors could be used to assist processing decisions. In

evaluating choices between potential constructs, a DIM allocator could estimate the

expected impact of the choices on the final design.

At the LSMS level, the predictors should have application in applying global strategies to

guide logic synthesis and module selection.

Outside the context of CMU-DA, these predictors could be applied to the very early system

level block diagrams in hand designs to estimate the range of cost, delay, and power that.

might be expected in a detailed design.

118

5.7 Conclusions

The LSMS step of CMU-DA is the first point where actual hardware information is

associated with a design. Until now, the size and shape of design spaces could not be

estimated or measured in dollars, nanoseconds, and milliwatts. The advent of SYNNER as a

tool for assigning actual hardware and directing that selection based on designer constraints

has made it practical to map some transformation design spaces. Transformation design . .
spaces using real module sets have been shown to have parabolic bounds rather than the

expected hyperbolic bounds. Using the data from the design space studies, a set of

predictors have been derived that make it possible to estimate the achievable bounds of the

cost, delay, and power parameters before a design is processed at the LSMS level.

The capability to manipulate designs by varying constraints h9-s just started to be exploited.

However, from that start several important results have been realized:

• The	 predictors are specific to each module set and can be included as summary
information with the module set databases. Unlike earlier speculation, the
predictors are also a function of processed designs and are not simply
summarized module set information.

• For the first time within CMU-DA, information has been extracted from one level of
design that can serve as guidance for earlier levels of design. The predictors can
be applied at the Design Style Selection level, the Data/Memory allocator level,
and the LSMS level (to aid global synthesis strategy).

• The predictors	 could be used outside the context of CMU-DA as estimators to
guide the implementation of hand designs.

119

Chapter 6

Results and Conclusions

"Man-machine identity is achieved not by attributing human attributes to the
machine, but by attributing mechanical limitations to man."

-- Mortimer Taube

6.1 Results

The research reported in this thesis is a first excursion into the automation of the Logic

Synthesis and Module Selection level of digital design. The excursion began by identifying

and automating certain transformations (Chapter 2) that appeared to be necessary to

manipulate the structure of a design. The transformations have application as computer

aided design tools for use by a human designer. However, the development of a surrogate

designer (Chapter 3) to exercise the judgment in applying the transformations brought the

LSMS level into true design automation. Calibration of the automated system (Chapter 4)

against human designers quantified the abilities of SYNNER and gave confidence that it is

very close to producing designs indistinguishable from those of the population of relatively

good human designers. The calibration occurred toward the "optimal" end of a design

space, the end approaching the intersection of axes. Given the confidence that SYNNER was

reasonably good toward the optimal end of the design space, the next step (Chapter 5) was to

apply its speed and capability for varying constraints to a number of descriptions in order to

"map" the design space projections for cost, delay, and power. The design space projections

are interesting since they imply a parabolic shape rather than the expected hyperbolic shape.

The wealth of data accumulated could only be subjected to a rather superficial analysis due to

time and size constraints here. However, the information led to the development of a set of

predictors which can be used with hand design methods or higher levels of a design

automation system to estimate the general bounds of design space projections. Predictions

120

are simply end points and define a bounding box in the design space projections. It is very

possible for future research to extend the concept to include parabolic or elliptic bounds on

the shape of the estimated design space.

6.2 Cont ri butions

When this work began it was not really clear that there was a partic~larly large problem

within the module selection area. It was even less clear that there were any significant

tradeoffs that would lead to sizable design space projections. Both of those early doubts have

been proven to be unfounded. One of the contributions· of this work has been the

identification and structuring of the LSMS design level.

Earlier work in module selection ([Barbacci 73], [Rege 74]) used module sets that were

defined with more consistent control and data interfaces than are found in the highly used

commercial module sets. The decision to try to deal with actual module sets rather than

"nicely" defined module sets was an attempt to satisfy a part of the goal to keep CMU-DA

technologically relevant (which implies that it should be technology independent).

Implementation of the module set database concept with the capability of module

independent transformations provided a demonstration that it is possible to deal with different

technologies (at least at the SSI/MSI level). Whether this particular implementation is judged

as good, bad, or indifferent is of little consequence. What is important is the existence of at

least one demonstration that the problem can be organized and managed with software aids.

The fact of existence hopefully will provide one additional motivation for undertaking

additional research and development in this area.

The existence of a software tool with the capability to process designs with different module

sets and different constraints provided an opportunity to explore design spaces. For at least

the past decade, the concept of trading cost for speed has been cast as a projection of a

design space. Data points in design spaces have generally been provided by computer

manufacturers in the form of computer families (the most notable of these are the IBM

360/370 and DEC PDP-11 families). The sheer cost of developing, marketing, and supporting

computer families has left such design spaces sparcely populated. The expense of

developing alternative designs has mitigated any desire to get an actual look at design space

projections. Even the small sample of human designs generated for the experiment of

Chapter 4 took between two and four weeks to complete (obviously on a low priority/part time

basis). SYNNER generated cost, delay, and power points for 64 sets of constraints on three

121

designs using two module sets (384 points) within an eight hour (wall clock) period9. This

capability made it possible to actually map desig~ space. projections. These projections

represent SYNNER's structural manipulation capabilities and do not as yet imply too much

about the absolute bounds of the design space. However, with ranges exceeding 300% for

cost and power with TTL, these design spaces provide a statement about the shape of a

useful set of tradeoffs. The surprising parabolic bound to these design spaces appears in

hindsight to be more reasonable (for real module sets) than the expected hyperbolic bound.

This discovery is significant since it changes the way in which design spaces at this level will

be envisioned. However, better quantification of bounds and attempts to predict the absolute

limits of such bounds remain for future work.

The approach to implementation was unique within the CMU-DA context: The software

system was designed to be configurable from a variety. of external means including module

databases, equivalence axioms, command files, and direct designer input. The resulting

flexibility provides a cost effective means of exploring this level of design by making it possible

to perturb variables (module sets, axioms, etc.) and observe the resulting impact on a design.

This capability brings an air of engineering expermentalism that offers a useful balance to the

more formal investigations of CMU-DA.

6.3 Futu re Research

This research can be viewed as a rather long but narrow penetration of the LSMS design

level. It has traveled a long distance but has passed many tempting opportunities to explore

interesting issues that became evident along the way. A few of those issues will be outlined

here in the hope that they will provide further ideas to people that are interested in continuing

these explorations.

SYNNER was developed to deal with the only DIM allocator that is currently available in

CMU-DA. This allocator is for the distributed design style. SSI/MSI level modules are

appropriate for distributed designs, but they are not necessarily appropriate for other design

styles. No work has yet been done on LSMS issues for LSI modules. In many ways it would

appear that LSMS would be simplified (or at least the opportunities for trading off constraints

would be reduced) if the modules were more capable. However, the difference in range of

parameters for TTL and Sandia Cells indicates that this may not be true. While SYNNER's

techniques might be usefully applied to the design of LSI modules, the actual application of

LSI modules to large designs may require development of a completely different approach.

9Without ever leaving f9r coffee.

122

Within the confines of the distributed design style and SSI/MSI modules, there are a large

number of issues that beg for investigation. SYNNER takes an extremely localized approach

to synthesis and selection. The nodes of a design are viewed one at a time as if they were on

a strip of movie film that is run past a small window restricting the view to a single frame

Constraints are applied to the modules or aggregate of modules used to implement single

nodes. A more global view the design would lead to more optimal results. By taking a wider

view of the locality around a specific node, opportunities for reductions could be identified.

For example, register nodes may have merged operators that require a counter to be selected.

If an adder existed in the locality of the register, it might be beneficial to multiplex its inputs to

perform an increment rather than assign a counter. Yet a wider view might be able to analyze

the interactions of such localities and develop strategies for optimizing the total design.

If more global strategies are developed it may become possible make designer constraints

reflect total design goals. As it stands, SYNNER can be told (for example) to minimize the cost

or it can be given a specific cost as an absolute constraint. Either form deals with a list of

candidate modules for implementing a: single node. It is desirable to be able to set goals for

the entire design (a 500ns, $300, TTL PDP-B). The localized approach in SYNNER does not

allow specification of goals because there is no strategy for dealing with them.

SYNNER explores various structures to implement specified behaviors. Other approaches

are possible and might be worth investigating. It would be possible to hold the structure

constant and synthesize "super modules" from existing devises. The super modules would

implement the behavior required by a specific node, but it could also be stored in the module

database for future use. A mixed approach might be employed to iterate between structural

modification and super module synthesis. It would be a difficult task to determine if the

constructs were converging, but that might be an interesting application of some artificial

intelligence techniques such as Means-Ends analysis [Ernst 69].

The first implementation of CMU-DA was structured as a feed-forward model. Designs

simply progress from a predecessor step of the system to a successor step. From the outset it

has been acknowledged that some form of feedback between the partitions of the system

would be necessary to produce optimal designs. Identifying and dealing with the issues

localized to each partition of CMU-DA have received the major attention to this point. It would

now be both appropriate and interesting to investigate just what kind of information could be

returned from the LSMS level to a higher level (DIM allocator, Design Style Selector, or Global

Optimization) in order to arrive at a better overall result.

123

Appendices

124

125

Appendix A

The Module Database System

The storage and retrieval of module and module set information was one of the earliest

concerns of this research [Leive 77]. An investigation of database systems available in the

CMU environment led to the inescapable conclusion that development of a limited database

facility specifically tailored to the needs of LSMS would be worthwhile. The early attempts to

expeditiously develop a minimum facility resulted in the decision to devise a hierarchy of

ASCII files that could be manipulated with the existing text editors. The access mechanism

and the data record formats were embedded in an early version of SYNNER. However, as

other steps of CMU-DA (particularly Control Allocation) were implemented, it became

apparent that a more flexible and generalized database mechanism would be needed to serve

an expanded community of users. The first step in generalizing the database system was the

development of an editor (DBEDIT [Leive 79, Weiss 79]) for the database. The editor was

designed to process a very general form of a record oriented database. An access

mechanism (MDBLIB [Leive 79]) was also developed to remove most of the chores of

information retrieval from individual programs. The editor and the access mechanism use the

same externally defined data record format. Therefore, it is quite easy to extend the

information content of any of the databases as new requirements evolve.

A.1 Module Database

The Module Information DataBase access structure of [Leive 77] is shown in Figure A-1.

The hierarchical structuring of the information follows the top-down philosophy of the design

synthesis task by providing either summary or detailed information to the design programs.

The design style selector would only have access to certain types of summary information

while the allocators followed by the LSMS system and Control Allocator could access

progressively more detailed design information.

The implemented database follows the structure of Figure A-1 closely although some details

differ. The module database (MOB) is really distributed across several ASCII files that allow

------- -------------

126

1---------

/ - - - - - - - - - - - - - - -: NDX.DDF :
/

I ----------I

MDB.NDX 1/
/

I

0 0 0 a a a
1---------

- - -- - - / - -~ DDS.DFF:/ /
/ / /

/ / /

MICRO.DSS 1/
I

DIST.DSS \/
I

PIPE.DSS
/

0

0

0

0

0

0

(UNDEFINED) (UNDEFINED

/
/

CMOS.DBs,

1---------

/-------- ------/------- - - --
/

/

CELL.DB~TTL.DBK /
/ /

- -/ - ~ DIST.DDF:
/ 1 ---/

/
/

Figu re A·1: Module Database Organization and Access

127

ease of access, maintenance, and transportability. The files are linked together by filename

pointers as indicated in Figure A-1. The ·.DBK f!les are .the·"databooks" which contain

specific module information. The· .NDX and * .DSS files provide the access paths to the

detailed information. They also will contain the summary information extracted from each

more detailed level of the database. The *.DDF files are the data definition files which specify

the format of the data and access files.

The database is organized in a'hierarchy of accesslevels. The most inclusive accesslevel

is an index containing pointers to an intermediate index. The intermediate index contains

pointers to the lowest accesslevel, the module databases. Individual modules within the

module databases may contain lists of information that may be of any length. The lists within

specific modules are said to be nested. Nested lists may also contain other n'ested list to any

depth. Such nested lists are referred to as nestingleve~s.

The root node of the MOB is a file named MDB.I\IDX, the iNDeX file. MDB.NDX defines

access to the Design Style Sets. The form of MDB.NDX is:

NDX.DDF[N750DA99]
o DIST DIST.DSS N750DA99
o MICRO NONE.PSS N750DA99

The reference to NDX.DDF is a pointer to a file containing the data format definition. The

leading '0' on a line is a reference line number. Both of these items will be explained in more

detail later in this discussion. The first character string identifies the Design Style by name.

The second field defines the <filename.extension) of the access path to the Design Style

Set Index. The third field is the account number where the file defined by the second field

resides. Note that only the Distributed Design Style Set is defined (the file NONE.DSS is

empty).

The Distributed Design Style Set index (DISTDSS) points to the module sets that are

included in that design style set:

DSS.DDF[N750DA99]
o TTL TTL.DBK N750DA99 3.00 DOLLARS: PLUS
1 TTL MW NS

o CELL SANDIA.DBK N750DA99 2.00 SQMILS:MUL
1 CELL UW NS

o CMOS CMOS.DBK N750DA99 3.00 DOLLARS: PLUS
1 CMOS UW NS

The format is similar to that of the NDX file, however the individual module sets are named.

128

Four pieces of module set summary information appear after the accessing information. The

number (3.00 for TTL and CMOS and 2.00 for the Sandia Cells) is the overhead factor. The

attribute:value pair following the overhead factor provides both the units and the method of

applying the overhead. The units are dollars [Blakeslee 75] for TTL and CMOS and square

mils for Sandia Cells. In the case of the Sandia Cells, the number represents the silicon area

overhead 'cost' for routing of each cell. "PLUS" indicates an additive overhead model is used

and "MUL" indicates a multiplicative overhead model is used. The parameters on line "1" are

the units for the power and delay data book entries. The summary information will be

expanded to summarize databook information for use by the allocators and the style selector.

The end result of these access paths is a data book (* .DBK) file that contains the actual

parameters specifying the member modules. The following example from the TTL.DBK is

presented to indicate the form of module information:

0 SN7404 NOT 72.12 TRUE
1 SN7404 va 1

o OPN.l LOGIC:NOT

2 SN7404 1 1 0

3 SN7404 1 1
4 SN7404 6 0.18 1 20
5 SN7404 NOM:I0.00 NOM:I0.00
6 SN7404 TI 1

14 SN7404 0 0
1

o NOT 0 0 1 20 0

There is an identifying line number and a module identifier (SN7404) attached to each line.

The individual fields on each line are a mixture of string, integer, real and boolean operand

types. Each element of MOB discussed in previous sections has a different format, but the

LSMS system and the editor have been designed to operate on each of them without specific

knowledge of the format. This is accomplished by specifying a Data DeFinition (* .DDF) file

that utilizes a simple syntax to specify the field name, the line number, the field number, and

the data type. The DDF file for DIST.DSS is shown:

FILENAME 0 0 S FILENAME. EXT
PPN 0 1 S FILE RESIDENT PPN
OVERHEAD 0 2 R MOD MOUNT OVERHEAD

The first parameter is the FIELD name which is a string of up to 10 characters. It is used by

the information access routines in both the editor and the the database access routines to

locate a specific field. The second parameter is the line number on which the data will reside

129

in the database. The third parameter is the positional number of the field in the specified line.

The final parameter specifies the data type and must be a member of the set: B, I, S, R, AVB,

AVI, AVS, AVR, P, O. These stand for: Boolean, Integer, String, Real, Attribute-Value:Boolean,

Attribute-Value: Integer, Attribute-Value:String, Attribute-Value:Real, Pointer, and Octal

Integer. The comment at the end is provided as an explanation of the field and is required

when building DDF files. The comment is used by the editor as an extended help facility

during field insertion.

The DDF files correspond quite closely in both spirit and implementation to the schemas of

larger database systems [Wiederhold 77]. True schemas generally contain more information

such as valid ranges for each data type. Schernas may be tailored such that different users

have different 'views' of the same data. All of the attributes of schemas are interesting and

useful, but they exceed module database requirements.

130

A.2 DataBook Data Definition

The data definition (DDF) for the databook portion of the database is discussed in this

section. It defines the position, field name, and data type of each entry in a databook. The

fields that are defined contain enough information for data part module selection and

controller synthesis.

Seven data types are supported by the Module DataBase:

1. Data type string allows strings that may be up to 10 characters long. They must
start with an alphabetic character. All other characters may consist of the set: '.',
'A':'Z', 'a':'z', '0':'9'. Lower case alphabetic characters are set to upper case. No
embedded spaces are allowed. All characters not in the specified set act as
string delimiters. The DDF symbol for character string is'S'.

2. Data type integer consists of the set of all legal (PASCAL) [Jensen 74] integers.
Leading' +' or '.' signs are recognized, but only the minus sign is restored on
output. Integers are represented in base 10. The DDF symbol for integer is ' I'.

3. Data type octal allows octal integers. The DDF symbol for octal is '0'.

4. Data type real allows all legal (PASCAL) real numbers. The DDF symbol for real
is'R'.

5. Data type boolean is represented by the strings: 'TRUE' or 'FALSE'. The DDF
symbol for boolean is. 'B'.

6.	 Attri bute:Value pairs consist of a string identifier (the attribute), a separator ':',
and a value. The value may be any of the basic data types: string, integer, real or
boolean. The DDF symbols for attribute:value pairs are:

• AVS . String value

• AVI - Integer value

• AVR - Real value

• AVB - Boolean value

7. Data type pointe r indicates thaUhe associated field will point to nested modules.
This means that module definitions in the database can be trees containing other
modules with different basic structures. The motivation for this data type can be
seen by considering the problem of specifying the physical pin on a module.

.Even in	 the TTL module set there are different numbers of pins on various
modules. It would be possible to allow spaces for up to 24 pins in each module
definition. However, this would not be general and it would make it difficult to
access the pin information. A better way is to make a PIN field that is a pointer to
pin 'modules'. The list can be of variable length and will contain field definition
(again, from the DDF) that are tailored to a description of the pin information. The
DDF symbol for pointer is 'P'.

131

The complete data definition for a module databook is included below.

FNAME o o S Common function name
DATE o 1. R Date of introduction: YY.MM
AUTO o 2 B Allow or Disallow Autobinding
TYPE 1 o S Type: VO, VC. PO, PC
OPN 1 1 P Operations performed by module
(OPN o 0 AVS CLASS:OPN (LOGIC:AND. etc.)
)
DIBWD 2 o I Data Path (parallel) input bit width
DINS 2 1 I Number of Data Inputs
DIFLAG 2 2 P Data Input Flag List
(NAME o 0 S Input Pin Name

FLAG o 1 P Pointer to Flag List
(FLAG o o S Link Flag that can be matched
)

)
DOBWD 3 0 I Data Path (parallel) output bit width
DOUTS 3 1 I Number of Data outputs
REPS 4 0 I Replications
COST 4 1 R Cost
LOAD 4 2 I Input Load Un its
DRIVE 4 3 I Output drive (Load Units)
POWER 5 0 AVR Power used (MW:I0.0), W, MW. UW. NW
DELAY 5 1 AVR De 1ay: MAX: 9 . 5
MFGR 60S Manufacturer Name Abbreviation
COMPLX 6 1 I Equivalent gates
ATTR 7 0 P Attributes: LSHIFT. INCR. etc.
(ATTR o 0 S LSHIFT. RSHIFT. INCR, DECR. CLEAR
)
DATAIN 8 0 P Data Input Pins
(PN o 0 S Pin Name

INPUT o 1 I Input Number
VP o 2 I Data Vector Position
TSETUP 1 0 I Setup time (Nsec)
THOLD 1 1 I Hold time (Nsec)

)
DATAOUT 8 1 P Data Output Pins
(PN o 0 S Pin Name

OUTPUT o 1 I Output Number
VP o 2 I Data Vector Position

)
PWR 9 o P Power Voltage Levels
(PN o 0 S Pin Name

VOLTAGE o 1 I Voltage
CURRENT o 2 R MA

)
PIN 10 0 P Package Pin Definitions
(PN 0 o S Pin Name

REP 0 1 I Replication Pin Number
)
CTLLINES 14 0 I Number Of Control Lines For This Device
CTLNAME 14 1 P Control Line Names (Ordered)
(PINNAME 0 o S Pin Name

132

PINTYPE 0 1 I Pin Type O;Select. l;Evoke
NON EVOKE 0 2 S Value For This Pin To Nonevoke (H L X)SUBMODNO 0 3 I Submodule Class Number For This Line

)
CTLESEQ 14 2 P Control Evoke Sequences
(EVOKLINE 0 0 I Ctlname Number Of Active Evoke Line

EVOKSTEP 0 1 I Eseq Number Of Actual Evoke StepSUBMOD 0 2 I Submodule Required For This Operation
MAXTIME 0 3 I Time to perform this operation
ESEQ 0 4 P Evoke Sequence For This Operation
{ EVAL 0 0 P Evoke Values For The Control Pins

{ BnVAL 0 0 S Values For The Pins (P N H L SX)
)

133

A.3 Database Editor

The database editor (DBEDIT) was developed to make it convenient to maintain module set

information. The editor is able to operate on any of the accesslevels.

When the editor is invoked, it reads a specified database file and creates a backup copy of

that file. It then enters the command mode. At that point, the following

commands/capabilities are available:

COMMANDS EXPLANATION

P<Range> PRINT: Modules. a Module. a Line or a Field
L<Range> LIST: print to a file rather than the scr.een
I<Range> INSERT: a Module. a Line or a Field
D<Range> DELETE: a Module. a Line or (default) a Field
R<Range> REPLACE: a Module, a Line or a Field
O<Range> WINDOW: Print IDs of: Pred, Current. Succ
B<Range> BACK: Move to Module/Line/Field

< PRED: Move to pred Module/Line/Field (Prints)

> SUCC: Move to succ Module/Line/Field (Prints)

W SAVE: Save the edit, then continue editing

1"" POP: Return to next highest edit level

E EXIT~ after saving the edit

Q QUIT: without saving the edit

N NEXT: Save the edit then edit another file

G GO: quit then edit the next file

H HELP: Print this list

H<Topic> Prints help on <Topic)
Type H TOPICS for Topic list

The <RANGE> specification directs the editor to operate on modules, lines, or fields.

134

A.4 Database Access

A BLlSS-1 0 compatible database access package called MDBLIB has been created to make

it easy to retreive module information. The access package is designed to completely insulate

the user from any future changes in the actual storage and retrieval mechanisms used to

operate the database.

Initialization is performed to set up the accesslevels of the database. The initialization entry

point is called three times: the first call initializes the database index; the second call

initializes a design style set; the third call initializes the databook. After initialization, accesses

can be performed on any level of the database.

The access mechanism consists of a query/response format: the query for information is

stated by parameters passed to the called entry point. The response is information returned

to a predefined location called the retu rn block. The returnblock contains a copy of the

requested information and several pieces of status information. The status information

includes a retu rncode which allows the user to determine if the query was successful or

exactly why the query failed if it was unsuccessful.

The display entry point is provided primarily for use with interactive systems. Database

modules may be displayed in a format similar to that provided by DBEDIT.

The global entry point MDBLOAD must be called three times to fully initialize the database.

The first call to MDBLOAD must be to initialize the database index. The supported database

index file is called:

rtnblk _MOBLOAO('NOX'tPLIT ASCIZ 'MOB.NOXt):
The variable 'rtnblk' is defined by the user and receives the address of a returnblock initialized

by the 'NDX' call to MDBLOAD. The first parameter to MDBLOAD is a short string telling it that

the index file is to be loaded. The second parameter is a pointer to a long string giving the file

specification.

The second call to MDBLOAD initializes the 'DSS' index. This call differs from the 'NDX' call

in two of ways; the call does not return a pointer; MDBLOAD returns TRUE (1) if the

initialization was successful or FALSE (0) if the initialization failed. The first parameter is

similar to the first parameter of the index initialization call. The second parameter, however, is

not a file name, it is the name of a design style set. The name must correspond to a design

style set defined in the NDX file. The NDX file contains the file access information. An

example of design style set index initialization is:

135

IF NOT MOBLOAO('OSS',PLIT ASCIZ 'OIST') THEN RETURN;
The second parameter is a pointer to a long string that is the valid identifier for the distributed

design style set.

The final call to MDBLOAD opens the lowest accesslevel of the database, the databook.

Since the format and returns are similar to those for the DSS initialization, the example will be

presented with further discussion:

IF NOT MOBLOAO('OBK',PLIT ASCIZ 'TTL') THEN RETURN;

Once the database is initialized, any level may be accessed. The single entry point

MDBACCESS is provided to retreive several kinds of information either about the state of the

database processing or about the modules stored in the database. To do all of that with a

single entry point requires that several parameters be passed with each call. The number of

parameters will vary depending of the activity requested. Version 1A of MDBLIB supports

twelve different activities that fall into the rough categories of status query, positioning

commands, and access commands. The general format for a query is:

MDBACCESS«parameters>,<command>,<accesslevel>.<returnblock»

Where:
<parameters> .. = a to 2 parameters as required by the

requested activity.
<command> : : = <shortstring>
<shortstring>: := 'CHECK' I 'VERS' 'HEAD' I 'TAIL'

'SUCC' I 'PRED' 'FIND' I 'ENTER'
'EXIT' I 'LINK' 'TVPE' I 'VALUE'

<accesslevel>: := 'NDX' I'DSS • I' DBK '
<returnblock>: := pointer to a returnblock

. (if initialized):
pointer with value zero

(if the pointer is to
be initialized)

MDBACCESS directly returns the same value of the returncode that is placed in the

returnblock. Only the 'success' returncode evaluates to TRUE. All error codes evaluate to

FALSE. This feature makes it easy to determine if an access succeeded or failed without

having to first read the returnblock.

Before undertaking a detailed discussion of the access calls it is necessary to define the

general form of the returnblock and specify the codes and types of values that are returned.

The returnblock is large enough to contain all of the information that may be returned by the

database. However, the .user only needs to be concerned wiJh the first four words. The

picture of the returnblock is:

136

1:::::::::::::::::::::::::::::::1
1 Data Returnblock 1
I---~-----------+----------~----I
1 DBTYPE 1 DBRCODE 1 o

1---------------+---------------1

1 DBACCLEV 1 DBNEST 1 1

1---------------+---------------1

1 DBFIELD 1 DBMODULE 1 2

1---------------+---------------1

1 DBATTR 1 DBVALU~ 1 3

1:::::::::::::::::::::::::::::::1

The DBTYPE field will return a number identifying the datatype for any access or inquiry that

returns field information. The DBRCODE field will contain a returncode specifying the

success or failure of any attempted access. This is the same value as is returned dir.ectly by

the MDBACCESS routine. Only the 'success' return evaluates as TRUE. The returncodes are: .

RCAF Access Failure

RCSUCC = SUCCESS

RCUV = Uninitialized Value

RCNSF = No Such Field

RCNSM = No Such Module

RCNDBK = No DBK Loaded

RCNDSS = No DSS Loaded

RCNNDX = No NDX Loaded

RCNSL = No Such Level

RCNSC = No Such Command

RCNP = Not a Pointer

137

The DBACCLEV field will contain an integer identifying the index or databook level that is

being queried. The values are:

Index level ('NOX') ·:= 1· Oesign Style Set level ('055') : := 2

OataBook level ('OBK') ·:= 3
·

The D8t'\IEST field will contain an integer identifying the nesti n!:J level that is being

processed. The outer nesting level has the value O. This level corresponds to the individual

SN74XX modules in the TTLDBK. Pointer fields within individual modules allow nested lists of

modules. If processing is being done within such a list, the value returned in DBNEST will

indicate the depth of the list.

The DBFIELD, DBMODULE, and DBATTR fields are all pointers to strings. DBFIELD points

to the fieldname, DBMODULE points to the modulename, and DBATTR points to the attribute

(always a string) of an attribute-value pair.

The DBVALUE field is an pointer to a value returned by an access.

The returncode (DBRCODE), accesslevel (DBACCLEV), and the nestinglevel (DBNEST) are

filled for each access to MDBACCESS regardless of the type of activity requested. The

remaining fields are selectively filled or returned containing (or pointing to) no value (zeros)

depending on the type of access.

Two commands are provided to retreive information about the state of the database or the

database access package. The CHECK command provides a means to test if an accesslevel

is initialized. The VERS command returns the version number of the MDBLIB database

access package.

By far the largest number of commands (eight) are devoted to positioning to appropriate

levels or modules prior to accessing information. Four of the positioning commands (HEAD,

TAIL, SUCCessor, and PREDecessor) allow relative motion within the list of modules at a

particular nesting level. These commands to not require a module identifier. The FIND

command does require a module identifier and is used to search for a particular module.

ENTER and EXIT are used to traverse nesting levels. The LINK command is used to traverse

accesslevels.

HEAD returns the modulename of the first module in the list. TAIL returns the modulename

of the last module in the list. The DBMODLILE field of the returnblock points to the

modulename.

138

The general form of the call is:

MDBACCESS('SUCC', 'DBK',rtnblk);

MDBACCESS('PRED','DBK' ,rtnblk);

If the access is successful, the modulename of the successor or predecessor to the current

module is returned (pointed to by the DBMODULE field of the returnblock). The most likely

failure mode is RCNSM (no such module) which could occur if the predecessor of the HEAD

mod ule or the successor of the TAIL module is requested.

The FIND command is used to position the database access mechanism to a specific

module.

The ENTER and EXIT commands are used to traverse nestinglevels within a module.

ENTER is used to change the scope of the accessing mechanism to make a nested list

available for further processing. EXIT is used to return to the next outer nesting level. The

EXIT command will change the scope back to the calling nestinglevel and will cause the

DBNEST field to be decremented. at nesting level 0, the access will fail and the returncode will

indicate no such level (RCNSL). If EXIT succeeds, the modulename will be the same as the

module from which the ENTER command was executed.

The LINK command is used to traverse the access hierarchy. As the database is initialized,

a module from the NDX points to a DSS index. A module from the DSS points to a specific

DBK. The LINK command applied to an accesslevel will return the modulename of the module

that points to the next lower accesslevel.

Two commands are provided to get !nformation from the database. The TYPE command is

used to determine the datatype of a specific field. The VALUE command is used to return

both the value and the datatype of a field. In general, VALUE will return either the value of the

requested field or the attribute and value for attribute-value fields. The only exception is the

VALUE of a pointer field which will return a decimal integer equal to the number of modules

nested under the pointer.

139

Appendix B

Synthesi~ Equivalence .Language

The Synthesis Equivalence Language (SEL) provides a means to specify equivalence

transformations that can be used to replace nodes in a design. The language is a relatively

simple tree structured language, but a powerful set of specification features allow designers

the flexibility to describe most interesting transformation13. These features include:

• The ability to specify an indeterminate number of sources.

• The ability to an output bits from one node as inputs to another node.

~ The ability to extend the syntax by su pplying qualifiers.

• The ability to specify constants as sources.

This appendix provides a complete BNF of the SEL. and a sample of the standard

equivalence transformations used for synthesis of the designs described in the thesis.

8.1 Syntax

(* • . = begin-optional
*) : : = end-optional
% begin-comment
% • • = end-comment

equivalence : : = class:classtype *lineid typeqv I
equivalence
*lineid+l typeqv

class · • =	 NODE SYMBOL OPER
LOGIC RELAT ARITH

classtype : : =	 nodetype symtype opertype
relattype ar ithtype

140

node type :: = REG I TREG
OPER I MUX
VC ~variable carrier%

MEMORY
DEMUX

VO
. PC

PO

%variable operator%
%path carrier%
%path operator%

symtype :: = REG
TFLAG

-I TREG
I MEMORY

FLAG

opertype • • = LOGIC
ARITH

1

1

RELAT
ML TFNC

SHIFT
COMPOS

logictype : : = NOT
NAND
EQV

I
I

AND
NOR

OR
XOR

relattype · . = TEST
LSS
GTR
NEQ2C
GEQ2C
EQUC
LEQlC
TESTSM
LSSSM
GTRSM

I EQL
I LEQ
I TEST2C
I LSS2C
I GTR2C
1 NEQlC
I GEQlC
1 EQLSM
I LEQSM

NEQ
GEQ
EQL2C
LEQ2C
TESTlC
LSSlC
GTRlC
NEQSM
GEQSM

arithtype • • = INCR
SUB TWO
NEGSM

1

I
I·

DECR
NEG2C
ADD2C

NEG
NEGlC
ADDlC

ADDSM
SUBSM
MULTSM
DIVSM
MULT

I SUB2C
1 MULT2C
I DIV2C
I MOD2C
I DIV

SUBlC
MUL TlC
DIVlC
MODlC
MOD

141

1 ineid
numbe r
digit

{qual}

typeqv
eqv
identity

<b itmap>

absolute
relative
alpha

structeqv

root

src

bares rc

nesteds rc

.. = number<bitmap>{qual}

::= digit I. number(*digit*)

::= 0 I 1 I 2 I 3 I 4 I 5 1 6 7 8 I 9

: :=	 nil
{CI} %Carry-In%

{CO} %Carry-Out%

{string}

::= eqv I eqv,eqv
•• = identity" I structeqv
.• = node type I symtype opertype

: : =	 nil I

<absolute> I

<absolute,absolute> I

<absolute,relative> I

<absolute,relative+absolute> I

<relative+absolute,absolute> I

<relative+absolute,relative> 1

<relative+absolute,relative+absolute>

::=	 number
::=	 alpha
.. = A I B I C I DIE I FIG I H I I I J I K L M

N I 0·1 P I Q I R I SIT I U I V I W I X Y Z

.. = root<bitmap>{qual} src<bitmap>{qual} I

structeqv src<bitmap>{qual}

::=	 logictype I relattype I arithtype

::=	 baresrc I nestedsrc

•• = $number<bitmap> {qual} % Relative Source % I

*lineid<bitmap> {qual} % Line Reference % I

#number<bitmap> {qual} % Constant % 1

[$number<bitmap>]{qual} % Replicated Source % I

[*lineid<bitmap>]{qual} % Replicated Refe rence %

(structeqv)<bitmap>{qual}

142

B.2 Examples

NODE:REG
NODE: LINK
NODE:MUX
NODE:OPER

*1
*1
*1
*1

. VC, REG
PC,LINK
PO,MUX
VO,OPER

LOGIC:OR *1 OR $1 (OR [$2J)
LOGIC:XOR *1 OR (AND $1 (NOT $2» (AND (NOT $1) $2)

RELAT:EQL *1 XOR $1 $2
*2 NOR [*1<0>J

RELAT:NEQ *1 NOT (EQL $1 $2)
RELAT:GTR *1 SUB $1 $2

*2 AND *1<0> (OR [*1<1>J)
RELAT:GEQ *1<0> SUB $1 $2
RELAT:GEQ *1 OR (EQL $1 $2) (GTR $1 $2)
RELAT:LSS *1 NOT (SUB $1 $2)<0>
RELAT:LEQ *1 OR (EQL $1 $2) (LSS $1 $2)
RELAT:EQL2C *1 EQL $1 $2
RELAT:LSS2C *1<0> SUB $1 $2
RELAT:GEQ2C *1 NOT (LSS2C $1 $2)
RELAT:LEQ2C *1 SUB $1 $2

*2 OR *1<0> (NOR [*1<1>J)

RELAT:GTR2C *1 XOR $1<0> $2<0>
*2 AND *1 $2<0>
*3 AND (NOT *1) (GTR $1<1:N> $2<1:N»
*4 OR *2 *3

RELAT:GEQ2C *1 OR (GTn2C $1 $2)<0> (EQL2C $1 $2)<0>
RELAT:LEQ2C *1 NOT (GTR2C $1 $2)
RELAT:NEQ2C *1 NOT (EQL2C $1 $2)

ARITH: INCR *1 ADD $1 #1
ARITH: DECR *1 SUB $1 #1
AR ITH: ADD2C *1 ADD $1 $2 #O<O>{CI}
ARITH:SUB2C *1 ADD $1 (NOT $2) #1<0>{CI}

143

Appendix C
ISP Desc riptions

C.1 Change Mechanism ISP

Change.mechanism :=
Begin

•• Declarations ••

Quarter.bit<>{system.input}, quarter deposited
Dime.bit<>{system.input}. dime depos ited
Nickel.bit<>{system.input}. nickel deposited
cost<4:0>{system.input}. cost of item selected
nickel.out.pin<>, Activate nickel return
dime.out.pinO, Activate dime return
quarter.out.pin<>. Activate quarter return
junk.outO. give person selected junk
sum<4:0>, Amount deposited.

Place value (40,20,10.5)
noquarte r<>, out of quarters
nodime<>. out of dimes
nonickel<>. out of nickels
correct.change.only<>,

144

** Main.Process **{US}

When coins are inserted. record their entry

start{main} :=
Begin
Correct.change.only = (noquarter OR nonickel OR nodime) Next
cost = 0 Next
WAIT (cost NEQ 0) Next ! Button specifies cost
IF Quarter.Bit =) (Sum = Sum + 5; Quarter.Bit = 0) Next
IF Dime.Bit =) (Sum = Sum + 2; Dime.Bit = 0) Next
IF Nickel.bit =) (Sum = Sum + 1; Nickel.Bit = 0) Next
IF sum GEQ cost =)

Begin
junk.out=l Next ! signal for junk dispenser
junk.out=O Next
IF « Sum = Sum - Cost) GTR 0) =) Coins.out.pin()
End Next

Restart start

End,

145

Coins.ouLpin :=
Begin
nickel.out.pin=dime.out.pin=quarter.out.pin=O Next
Run.Coins.out :=

Begin
IF not (noquarter AND nodime AND nonickel) =)

Begin
IF sum" GEQ 5 =)

Begin
IF not noquarter =)

Begin
quarter.out.pin = 1 Next
quarter.out.pin = 0
End Next

IF (sum = sum - 5) GEQ 5 => Restart Run.Coins.out
End Next

IF sum GEQ 2 =)

Begin

IF not nod ime =>

Begin
dime.out.pin = 1 Next
dime.out.pin = 0
End Next

IF (sum = sum - 2) GEQ 2 =) Restart Run.Coins.Out
End Next

IF sum GEQ 1 =)

Begin

IF not nonickel =)

Begin
nickel.out.pin = 1 Next
nickel.out.pin = 0
End Next

IF (sum = sum - 1) GEQ 1 =) Restart Run.Coins.out
End

End
End

End,

End

146

~
47 J 50 I 55

Const(O) Const(l)14~EQ I

51~ 88

611 141

102

361 35
 43 42 54 55
 10 102 1171 42
 1351

34
 41 53
 100 116
 1 134

ADD ADn SUB SUB SUB InZCR
141
 137
 142
37
 44
 56
 60
 103
 105
 12'-1""'1-:2-3,-'136 1140

GEQ r---cHL140

'-------l~-,......---:=....:...;;:...,

124
 122

123
 GEQ ~HL

106 104

~ 105 GEQ ~HL

61

'-------"~

57 &L-,
60
 GTR r--'-'HL

37
 44
 56
 103
 121
 136

tvrux /
17

Conse (1)

36, 43,
 ·00
54, 101,

,117, 135,
 130 lE='--'52 77 33

106 124

111 127'-----,

Const(2

~

111 ~7 130

110
GEQ

SUN
15

Const(5)

~3
72

GEQ

II
47 73

_

0

r- -----,

I 115

1 ?~2
 I 77 115 r ~ -'

126 5 REG 10'-'1:'_1 1,12REG
1

GEQ t\.L.U

I,!

'------'
JUNICOUT QUARTER.O:';T. DLlLOL'T. \;IC~LL.

PDl PE 'J[T.?I~;

131l
tiL

Figu re C'1: Change Mechanism Path Graph (1/2)

147

NODIME

I 11
REG I

31 65 b114

HL

:mQUARTER
: 7

i
REG

76 25 64

0
HL

25 20

24
OR

NONICKEL

I

I 13 I
REG 'I

20 70 b132

HL

I.....

64 65

63
AND

30 31

27
OR

32

67

70 67
66
AND

DIME-BIT NICKEL-BIT3
1 I:1I I :51"4

HL HL

~

~

CORRECT-CRANGE-ONLY

Figu re C- 2: Change Mechanism Path Graph (2/2)

148

C.2 Truncated PDP-8 ISP

POP8 :=
Begin

** Memory.State **

mp[#O:#7777]<O:11>, Main memory (4k words)
mb<O:l1> Memory buffer

** Processor.State **

LO, Link bit

AC<O:l1>, Accumulator

PC<O:l1> Program counter

** Instruction.Format **

IR\instruction.register<O~2>, Operation code

groupO : = MB<3>,

CLAO : = MB<4>,

CLLO : = MB<5>,

CMAO : = MB<6>,

CMLO : = MBO> ,

RARO : = f4B<8> ,

RALO : = MB<9>,

RTxO : = MB<10> ,

IACO : = M"B<11>

** Instruction.Interpretation **

run\instruction.interpretation{main} :=

Begin

MB = MP[PC] next

PC = PC + 1 next

exec () next

RESTART run

End

149

** Instruction.Execution **{US}

exec\instruction.execution : =

Begin

IR = MB<0:2> next

DECODE IR =>

Begin

#0 : = AND. : = AC = AC and MB,

#1 : = TAD : = L@AC = L@AC +{TC} MB,

#2 := ISZ : = Begin

MB = MB + 1 next
If MB eql 0 => PC = PC + 1
End,

#3 : = DCA :=	 Begin
MB = AC next
AC = 0
End,

#7 := OPR(),

Otherwise : = NO.OP()

End

End,

opr	 : =

Begin

If not group =>

Begin
If CLA => AC = 0;
If CLL => L = 0 next
If CMA => AC = not AC;
If CML => L = not L next
If lAC => L@AC = L@AC + 1 next
DECODE RTx =>

Begin
0	 : = Begin

If RAL => L@AC AC@L;
If RAR => AC@L L@AC
End,

1 : =	 Begin
If RAL => L@AC = L@AC slr 2 ;
If RAR => L@AC = L@AC srr 2
End

End

End

End

End

L

::n
to
C .,
(1)

o
w

Ul
3
~

""U
o
""U
O:l

""U

~
:r

C)
.,
III
U
:r

"
l\.l

-

~
~ 17

64 cpo

UE

46

--;t ~

~ --;t

\0 ~ILJX

2~

161

14--1 --]
AC

1 -
cpo 4342 101 67

cpo

42 43

41 101
 100
COllcat (77

10244

37 S[100 ~po 70 62
--- cpo cpo

l
(5S~

67 J-Q.

(66) COllcatCOllcat
I(36

lOS 12

12 III0 ~
37 36

3S
llS AND

71 107 114

INCR LROT RROT
40

74 73 111 ll2 117

120

73 112 117 ~2 40

ADDLC

0)

0
rl

47

," --;t
r---.0

rl

103

0) 0
rl N 47 102rl rl

/ \:S MLlX

16

1

I-'
lJl
o

151

CONSTAL'-!T (1)

I
I

CONSTANT (2)

(U)
1~16

I-lL HL

26 55

\12 ~rux j

'- --... ...J CONSTAi.'lT (0)

10

25

PC 1
3ad

2
TREG%2

6

3

MP

5

1
TREG%l

26 4L

11

)('-_~

52

Figure C·4: Small PDP·8 Path Graph (212)

(46

152

C.3 Full PDP-8 ISP

POP8 :=
Begin

The basic POP-8 instruction set, not including the
extended arithmetic element (EAE) option. I/O instructions
are limited to those dealing with the interrupt mechanism.

** Memory.State **

M\Memory[O:4095J<O:11>.

** Processor. State -*

PC\Program.Counter<O:ll>.

cpage\current.page<O:4>.

lac<O:12>.

L\LinkO := lac<O>.
AC\Accumulator<O:ll> := lac<1:12>.

mq\Multiplier.Quotient.Register<O:ll>.

interrupt.state<>.

interrupt.request<>.

switches<O: 11>.

153

** Instruction.Format **

i\instruction<O:ll>.

op\operation.code<0:2> := i<0:2>,

ib\indirect.bit<> := i<3>.

pb\page.O.bit<> := i<4>.

pa\page.address<0:6> := i<5:11>.

io.select<0:5> := i<3:8>. ! device select

io.control<0:2> : = i<9:11>. ! device operation

IO.PUlSE.Pi0 : = io.control<O>.

10. PULSE. P20 : = io.control<l> .
10. PULSE. P40 : = io.control<2>.

rot<0:2> : = i<8:10>. rotate group
groupO : = i<3> , microinstruction group
smaO : = i <5>. skip on mi nus AC
spaO : = i<5> , skip on pos it ive AC
szaO : = i<6>, skip on zero AC
snaO : = i<6>, skip on AC not zero
snlO : = i<7> , skip on l not zero
szlO : = i<7> , skip on l zero

. isO : = i<8>. invert skip sense
cl aO : = i <4>, clear AC
cllO : = i<5>, clear l
cmaO : = i<6>, complement AC
cmlO : = i<7> . complement l
iacO : = i<11> . increment AC
osrO : = i<9>. logical or AC with SWITCHES
hltO : = i <10>, halt the processor

** Address.Calculation ••

eadd\effective.address<O:li> :=
Begin
Decode pb =>

Begin
o := eadd ='00000 @ pa.

1 := eadd = cpage @ pa

End Next

If i b =>

Beg i n

If eadd<0:8> Eql #001 => M[eadd] = M[eadd] + 1 Next

eadd = M[eaddJ

End

End,

154

** Interpretation.Process **

main interpret :=
Begin
Repeat

Begin
i = M[PC]; cpage = PC<0:4) Next
PC = PC + 1 Next
execute() Next
If interrupt.state And interrupt. request =)

Begin

M[O] = PC Next

PC = 1

End

End

End,

** Execution.Processes **

execute :=
Begin
Decode op =)

Begin

#O\and := AC = AC And M[eadd()],

#l\tad := lac = lac + ('0 @ M[eadd()]),

#2\isz := Begin

M[eadd] = M[eadd()] + 1 Next
If M[eadd] Eql a =) PC = PC + 1
End,

#3\dca :=	 Begin
M[eadd()] =-AC Next
AC = a
End,

#4\jms :=	 Begin
M[eadd()] PC Next
PC = EADD + 1
End,

#5\jmp := PC = eadd(),

#6\iot := input.output(),

#7\opr := operate()

End

End,

155

input.output :=
Begin
Decode i<3:11> =>

Begin
#001\ion :=	 Begin ! turn Interrupt ON

interrupt.state = 1 Next
Restart interpret
End,

#002\iof ;=	 Begin turn Interrupt OFF
interrupt.state = 0
End,

Otherwise ; = No. Op() not implemented
End

End,

156

skipO.

skip.group :=
Begin
Decode is =)

Begin
a :=	 Begin

skip = a Next
If sn1 And (L Eq1 '1{US}) =) skip = 1;
If sza And (AC Eql 0) =) skip = 1;
If sma And (AC Lss 0) =) skip = 1
End.

1 :=	 Begin
skip = 1 Next
If szl And Not (L Eq1{US} '0) =) skip = 0;
If sna And Not (AC Neq 0) =) skip = 0;
If spa And Not (AC Geq 0) =) skip = a
End

End Next
If skip =) PC = PC + 1 Skip
End.

temp6<O:5). temporary register used in byte swap
temp12<O: 11>. 12 bit temp register used in ac/mq swap

operate :=
Begin
Decode group =)

Begin
a :=	 Begin group 1

If c1a =) AC = 0;
If c11 =) L = a Next
If cma =) AC = Not AC;
If cml =) L = Not L Next
If iac =) lac = lac + 1 Next
Decode rot =) rotate group

Begin
#0 := No.Op(),
#1\bsw := Begin

temp6 = ac<0:5) Next
ac<0:5) = ac<6:11) Next
ac<6:11) = temp6
End,

#2\ra1 := 1ac 1ac Sl r 1.

#3\rtl ::: lac lac Slr 2.

#4\rar ::: lac = lac Srr 1.

#5 \ rt r ::: lac lac Srr 2,

#6 := No.OPO.

#7 := No.Op()

End

End.

157

1 : = Begin groups 2 and 3
Decode i<11> =>

Begin
0 : = Begin ! group 2

skip.group() Next
If cla => AC = 0 Next
If osr => AC = AC Or switches;
If hlt => STOP()
End,

1 : = Begin group 3
Decode i<4:5> @ i<7> =)

Begin
0 : = No.Op{),
1\mql : == (mq = ac Next ac = 0) ,
2\mqa : = ac = mq Or ac,
3\swp : = (temp12 = mq Next

mq = ac Next
ac = temp12) •

4\cla := ac = 0,
5\cam : = (ac = 0; mq = 0) ,
6 : = No.Op{),
7 : = No.Op()
End

End
End

End
End

End

End

158

C.4 Mark-1 ISP

The Manchester University Mark-1 Computer

This is the ISPS description of the first version

of the machine. as reported in:

[Lavington. S.H .•

"A History of Manchester Computers".

National Computing Centre Publications.

Manchester. England, 1975J

Mario R. Barbacci (BARBACCI@CMUA)

MARK1 :=
Begin

** Memory.State ••

M[0:8191J<31:0>.

** Processor.State **

PI\Present.Instruction<15:0>.

F\Function<0:2> := PI<15:13>.

S<0:12> := PI<12:0>.

CR\Control.Register<12:0).

Acc\Accumulator<31:0),

** Instruction.Execution ** {TC}

Main I.Cycle :=
Begin
PI = M[CRJ<15:0> next
Decode F =>

Begin

O\JMP := CR = M[SJ.

1\JRP := CR CR + M[SJ.

2\LDN := Acc = - M[SJ,

3\STO : = M[SJ = Acc.

4:5\SUB := Acc = Acc- M[SJ.
6\CMP := If Acc Lss 0 =) CR = CR + 1,
7\STP := Stop()
End next.

CR = CR + 1 next

Restart I.Cycle

End

End

159

Appendix D
~un Example~

This appendix includes samples of three outputs available from SYNNER. All of the outputs

were captured from processing a PDP-8 design using the TTL module set. The first output is a

synthesis trace that monitors the design process and gives an indication of the

transformations applied to the design. The second output is a summary of the "before and

after" state of the design by node class. The final output is the Module Utilization Table which

summarizes the modules used in the design and provides cost and performance estimates of

the design.

The outputs chosen to be included here are a small sample of the information that can be

produced by SYNNER. There are sixteen (16) other types of output that can be explicitly

requested.

0.1 Synthesis Trace

The Synthesis Trace is the instrumentation output from SYNNER. It documents the state of

processing switches and lists the constraints in effect during processing of the design. It

keeps both wall clock and CPU timing information for all the major events in the automatic

processing. It logs the application of transformations and documents both trial and actual

equivalence synthesis.

An indicator of SYNNER's performance can be derived from the very last line of this output.

It shows that a design the complexity of the PDP-8 can be processed in under three minutes

(wall clock) using eight CPU seconds.

SYNNER VIT(1)-1 Instrumentation Log: 27 Aug 80 02:18:45
ALLOCATOR VER 2C(5) FRIDAY 18 JUL 80 2:50 AM PDP8.ISP

Entering AUTOBIND 02:19:04 [CPU:00:OO.29, DIF:OO:00.29]

PROFILE:

160

ECHO LOAD LOG VERBOSE INSTR HSPLIT INVE RT
OFF OFF ON ON ON ON ON

REDUCE SYNT UNBIND VJOIN RENUM QUIET CAND

ON ON OFF ON ON OFF ON

Style: DIST DSS File: DIST.DSS
Family: TTL Module Set File: TTL.DBK

Overhead Units: DOLLARS, Overhead Operation: PLUS

Constraints:

[OOlJ COST MIN Weight: 0.00
[002J DELAY MIN Weight: 0.00
[003J POWER MIN Weight: 0.00

Phase I: Unbind/Invert 02:19:04 [CPU:00:00.29, DIF:00:00.01J
Phase III: EIT/B 02:19:05 [CPU:00:00.33, DIF:00:00.03J

Attempting Split (1) on: NODE: #0036(REG, LAC)
Adding: NODE: #0340(REG, %OLAC)
Adding: NODE: #0341(CONCAT)
Moving: LINK: #0115 S: #0341 0: #0113
Moving: LINK: #0123 S: #0341 0: #0122
Moving: LINK: #0133 S: #0341 0: #0003
Moving: LINK: #0151 S: #0341 0: #0150
Moving: LINK: #0157 S: #0341 0: #0026
Moving: LINK: #0200 S: #0341 0: #0177
Moving: LINK: #0212 S: #0341 0: #0036
Moving: LINK: #0173 S: #0341 0: #0305
Moving: LINK: #0204 S: #0341 0: #0311
Moving: LINK: #0205 S: #0341 0: #0313
Moving: LINK: #0226 S: #0341 0: #0317
Moving: LINK: #0234 S: #0341 0: #0321
Moving: LINK: #0253 S: #0341 0: #0327
Moving: LINK: #0261 S: #0341 0: #0333
Moving: LINK: #0273 S: #0341 0: #0337
Moving: LINK: #0212 S: #0340 0: #0036
Adding: LINK: #0342 S: #0036 0: #0341
Adding: LINK: #0342 S: #0036 0: #0341
Adding: LINK: #0343 S: #0340 D: #0341
Adding: LINK: #0343 S: #0340 D: #0341
Adding: LINK: #0345 S: #0340 0: #0036
Adding: LINK: #0345 S: #0340 0: #0036
Adding: LINK: #0346 S: #0036 D: #0340
Adding: LINK: #0346 S: #0036 0: #0340

Synthesizing Occurrence 1: NODE: #0122(OPER, ADD2C)
ARITH:ADD2C *1 ADD $1 $2 #0<0>
Weight = 1.00

Installing replacement for: NODE: #0122(OPER, ADD2C)

161

Adding: NODE: #0350(CONST. 0)
Adding: NODE: #0353(OPER, ADD)
Moving: LINK: #0123 S: #0341 0: #0122
Moving: LINK: #0124 S: #0117 0: #0122
Adding: LINK: #0354 S: #0350 0: #0353

Attempting Split (1) on: NODE: #0353(OPER. ADD)
Adding: NODE: #0355(OPER, ADD)
Adding: NODE: #0356(CONCAT)
Moving: LINK: #0125 S: #0356 0: #0037
Adding: LINK: #0357 S: #0353 D: #0356
Adding: LINK: #0357 S: #0353 D: #0356
Adding: LINK: #0360 S: #0355 0: #0356
Adding: LINK: #0360 S: #0355 D: #0356
Adding: LINK: #0361 S: #0355 D: #0353
Adding: LINK: #0361 S: #0355 Di #0353

Synthesizing Occurrence 1: NODE: #0177(OPER. ADD2C)

ARITH:ADD2C *1 ADD $1 $2 #0<0>

Weight = 1.00

Installing replacement for: NODE: #0177(OPER. ADD2C)
Adding: NODE: #0365(CONST, 0)
Adding: NODE: #0370(OPER. ADD)
Moving: LINK: #0200 S: #0341 0: #0177
Moving: LINK: #0201 S: #0044 D: #0177
Adding: LINK: #0371 S: #0365 0: #0370

Attempting Split (1) on: NODE: #0370(OPER, ADD)
Adding: NODE: #0372(OPER. ADD)
Adding: NODE: #0373(CONCAT)
Moving: LINK: #0202 S: #0373 0: #0037
Adding: LINK: #0374 S: #0370 0: #0373
Adding: LINK: #0374 S: #0370 0: #0373
Adding: LINK: #0375 S: #0372 0: #0373
Adding: LINK: #0375 S: #0372 0: #0373
Adding: LINK: #0376 S: #0372 0: #0370
Adding: LINK: #0376 S: #0372 0: #0370

Attempting Split (4) on: NODE: #0340(REG. %lLAC)
Adding: NODE: #0401(REG. %O%lLAC)
Adding: NODE: #0402(CONCAT)
Moving: LINK: #0212 S: #0402 0: #0036
Moving; LINK: #0343 S: #0402 D: #0341
Moving: LINK: #0212 S: #0401 0: #0036
Adding: LINK: #0403 S: #0340 0: #0402
Adding: LINK: #0403 S: #0340 0: #0402
Adding: LINK: #0404 S: #0401 0: #0402
Adding: LINK: #0404 S: #0401 0: #0402
Adding: LINK: #0406 S: #0401 0: #0340
Adding: LINK: #0406 S: #0401 D: #0340
Adding: LINK: #0407 S: #0340 0: #0401
Adding: LINK: .#0407 S: #0340 D: #0401

162

Attempting Split (4) on: NODE: #0401(REG, %1%1LAC)
Adding: NODE: #0410(REG, %0%1%1LAC)
Adding: NODE: #0411(CONCAT)
Moving: LINK: #0212 S: #0411 0: #0036
Moving: LINK: #0404 S: #0411 0: #0402
Moving: LINK: #0212 S: #0410 0: #0036
Adding: LINK: #0412 S: #0401 0: #0411
Adding: LINK: #0412 S: #0401 0: #0411
Adding: LINK: #0413 S: #0410 0: #0411
Adding: LINK: #0413 S: #0·410 0: #0411
Adding: LINK: #0415 S: #0410 0: #0401
Adding: LINK: #0415 S: #0410 0: #0401
Adding: LINK: #0416 S: #0401 0: #0410
Adding: LINK: #0416 S: #0401 0: #0410

Synthesizing Occurrence 1 : NODE: #0056(OPER, ADD2C)

ARITH: ADD2C *1 ADD $1 $2 #0<0>

Weight = 1. 00

Installing replacement for: NODE: #0056(OPER, ADD2C)
Adding: NODE: #0420(CONST, 0)
Adding: NODE: #0423(OPER, ADD)
Moving: LINK: #0057 S: #0032 0: #0056
Moving: LINK: #0060 S: #0044 0: #0056
Adding: LINK: #0424 S:#0420 0: #0423

Synthesizing Occurrence 1: NODE: #0251(OPER, NEQ2C)
RELAT:NEQ2C *1 NEQ $1 $2

Synthesizing Occurrence 1: NODE: #0430(OPER, NEQ)
RELAT:NEQ *1 NOT (EQL $1 $2)

Weight = 0.50

Synthesizing Occurrence 2: NODE: #0430(OPER, NEQ)
RELAT:NEQ *1 XOR $1 $2

*2 OR [*1<0>]

Synthesizing Occurrence 1: NODE: #0453(OPER, OR)
LOGIC:OR *1 OR $1 (OR [$2])

We i g h t = 1. 00
Weight = 1.00

Weight = 0.25

Synthesizing Occurrence 2: NODE: #0251(OPER, NEQ2C)
RELAT:NEQ2C *1 NOT (EQL2C $1 $2)

Synthesizing Occurrence 1: NODE: #0431(OPER, EQL2C)
RELAT:EQL2C *1 EQL $1 $2

Weight = 1.00
Weight = 0.50

Installing replacement for: NODE: #0251(OPER, NEQ2C)

163

Adding:
Adding:
Moving:
Moving:
Adding:

NODE:
NODE:
LINK:
LINK:
LINK:

#0436(OPER, EQL)
#0432(OPER, NOT)
#0252 S: #0045 0:
#0326 S: #0327 0:
#0437 S: #0436 0:

#0251
#0251
#0432

Synthesizing
RELAT:GEQ2C

Occurr
*1

ence 1: NODE:
NOT (LSS2C $1

#0260
$2)

(OPER, GEQ2C)

Synthesizing Occurrence 1: NODE: #0444(OPER, LSS2C)
RELAT:LSS2C *1 SUB $1 $2

Weight = 1.00
Weight = 0.50

Synthesizing Occurrence 2: NODE: #0260(OPER, GEQ2C)
RELAT:GEQ2C *1 OR (GTR2C $1 $2)<0> (EQL2C $1 $2)<0>

Synthesizing Occurrence 1: NODE: #0444(OPER, EQL2C)
RELAT:EQL2C *1 EQL $1 $2

Weight = 1.00

Synthesizing Occurrence 1: NODE: #0450(OPER, GTR2C)
RELAT:GTR2C *1 XOR $1<0> $2<0>

*2 AND *1 $2<0>
*3 AND (NOT *1) (GTR $l<l:N> $2<1:N>)
*4 OR *2 *3

Weight = 0.07
Weight = 0.01

Synthesizing Occurrence 1: NODE: #0444(OPER, LSS2C)
RELAT:LSS2C *1 SUB $1 $2

Weight = 1.00

Re-Synthesizing Occurrence 2: NODE: #0260(OPER, GEQ2C)
Weight = 0.50

Installing replacement for: NODE: #0260(OPER, GEQ2C)
Adding: NODE: #0451(OPER, SUB)
Adding: NODE: #0445(OPER. NOT)
Moving: LINK: #0262 S: #0045 D: #0260
Moving: LINK: #0332 S: #0333 0: #0260
Adding: LINK: #0452 S: #0451 0: #0445

Synthesizing Occurrence 1: NODE: #0136(OPER. ADD2C)

ARITH:ADD2C *1 ADD $1 $2 #0<0>

Weight = 1.00

Installing replacement for: NODE: #0136(OPER. ADD2C)
Adding: NODE: #0454(CONST, 0)
Adding: NODE: #0457(OPER, ADD)
Moving: LINK: #0137 S: #0014 0: #0136
Moving: LINK: #0140 S: #0044 D: #0136
Adding: LINK: #0460 S: #0454 0: #0457

164

Synthesizing Occurrence 1: NODE: #0106(OPER, ADD2C)

ARITH:ADD2C *1 ADD $1 $2 #0<0>

Weight = 1.00

Installing replacement for: NODE: #0106(OPER, ADD2C)
Adding: NODE: #0462(CONST, 0)
Adding: NODE: #0465(OPER, ADD)
Moving: LINK: nOl07 S: #0102 0: #0106
Moving: LINK: #0110 S: #0044 0: #0106
Adding: LINK: #0466 S: #0462 0: #0465

Synthesizing Occurrence 1: NODE: #0126(OPER, EQL2C)
RELAT:EQL2C *1 EQL $1 $2
Weight = 1.00

Installing replacement for: NODE: #0126(OPER, EQL2C)
Adding: NODE: #0472(OPER, EQL)
Moving: LINK: #0127 S: #0102 0: #0126
Moving: LINK: #0130 S: #0045 0: #0126

Synthesizing Occurrence 1: NODE: #0224(OPER, EQL2C)
RELAT:EQL2C *1 EQL $1 $2
Weight = 1.00

Installing replacement for: NODE: #0224(OPER, EQL2C)
Adding: NODE: #0476(OPER, EQL)
Moving: LINK: #0225 S: #0045 0: #0224
Moving: LINK: #0316 S: #0317 0: #0224

Synthesizing Occurrence 1: NODE: #0233(OPER, LSS2C)
RELAT:LSS2C *1 SUB $1 $2
Weight =1.00

Installing replacement for: NODE: #0233(OPER, LSS2C)
Adding: NODE: #0502(OPER, SUB)
Moving: LINK: #0235 S: #0045 0: #0233
Moving: LINK: #0320 S: #0321 0: #0233

Synthesizing Occurrence 1: NODE: #0075(OPER, EQL2C)
RELAT:EQL2C *1 EQL $1 $2
Weight = 1.00

Installing replacement for: NODE: #0075(OPER, EQL2C)
Adding: NODE: #0506(OPER, EQL)
Moving: LINK: #0076 S: #0014 D: #0075
Moving: LINK: #0077 S: #0050 0: #0075

AUTOBINDING Completed 02:21:57 [CPU:00:08.32, DIF:00:07.100]
Total AUTO: Wall Clock: 00:02:52, CPU: 00:08.65

165

0.2 Synthesis Summary

The Synthesis Summary documents the net change in types of nodes due to design

synthesis.

VARIABLE CARRIERS (VC) Before: 28, After: 36, Change: 8
REG Before: 18, After: 21, Change: 3

REG Before:. 9, After: 11, Change: 2
TREG Before: 2, After: 2, Change: 0
FLAG Before: 7, After: 8, Change: 1

MEMORY Before: 1, After: 1, Change: 0
MEMORY Before: 1, After: 1, Change: 0

CONST Before: 8, After: 13, Change: 5
TREG Before: 1, After: 1, Change: 0

TREG Before: 1, After: 1, Change: 0

PATH OPERATORS (PO) Before: 10, After: 15, Change: 5
MUX Before: 7, After: 7, Change: 0
CONCAT Before: 3, After: 8, Change: 5

PATH CARRIERS (PC) Before: 146, After: 174, Change: 28
.LINK Before: 119, After: 147, Change: 28
HLINK Before: 27, After: 27, Change: 0

VARIABLE OPERATORS (VO) Before: 39, After: 39, Change: o
OPER Before: 39, After: 39, Change: 0

ARITH Before: 5, After: 9, Change: 4
ADD2C Befo re: 5, Af te 1": 0, Change: -5
ADD Before: 0, After: 7, Change: 7
SUB Before: 0, After: 2, Change: 2

RELAT Before: 8, After: 6, Change: -2
EQL2C Before: 3, After: 0, Change: -3
EQL Before: 2, After: 6, Change: 4
LSS2C Before: 1, After: 0, Change: -1
NEQ2C Before: 1, After: 0, Change: -1
GEQ2C Before: 1, Afte 1": 0, Change: -1

LOGIC Before: 26, After: 24, Change: -2
AND Before: 9, After: 9, Change: 0
OR Before: 3, After: 3, Change: 0
NOT Before: 14, After: 12, Change: -2

166

D.3 Module Utilization Table

The Module Utilization Table summarizes the module requirements for implementing the

design. It also provides performance information in terms of total cost, total power, and

estimates of the speed of the design and. the controller requirements.

ALLOCATOR VER 2C(5) FRIDAY 18 JUL 80 2:50 AM PDP8.ISP

•••••• MUT - MODULE UTILIZATION TABLE ••••••

Module:
Module:
Module:
Module:
Module:
Module:
Module:
Module:
Module:
Module:
Module:
Module:
Module:

SN7404
SN7408
SN7432
SN7474
SN7483
SN7485
FMEMORY
SN74150
SN74153
SN74157
SN74174
SN74181
SN74194

Function:
Function:
Function:
Function:
Function:
Function:
Function:
Function:
Function:
Function:
Function:
Function:
Function:

NOT
AND
OR
DFLOP
ADD
COMPA
MEMORY
MUX
MUX
MUX
REG
ALU
REG

Modules:
Modules:
Modules:
Modules:
Modules:
Modules:
Modules:
Modules:
Modules:
Modules:
Modules:
Modules:
Modules:

87
20
21

8
17
14

1
13
49
12
16

6
7

Packages:
Packages:
Packages:
Packages:
Packages:
Packages:
Packages:
Packages:
Packages:
Packages:
Packages:
Packages:
Packages:

15
5
6
4

17
14

1
13
25

3
16

6
7

Module Allocation Summary Data:

Tota 1 Bindable Nodes:
Nodes Actually Bound:
Percent Binding:
Tota 1 Packages Used:
Tota 1 Modules Used:
Tota 1 Spare Modules:
Module Utilization:
Tota 1 Powe r:
Control Words:
Control Word Size:
Max Control Path:
Max Path Delay:
Raw Package Cost:
Tota 1 Package Cost:

69
69

100%
132
271

7
97%

28437.00 MW
242

77 Bits
49

1853.00 NS
$ 88.13
$ 484.13

167

Appendix E

Module Database Entries

TTL Entries in the Module Database

Package Function

SN7400 NAND (2 input)
SN7402 NOR (2 input)
SN7404 NOT
SN7408 AND (2 input)
SN7410 NAND (3 input)
SN7411 AND (3 input)
SN7420 NAND (4 input)
SN7421 AND (4 input)
SN7427 NOR (3 input)
SN7430 NAND (8 input)
SN7432 OR (2 input)
SN7474 D Flip-Flop (1 bit)
SN7476 JK Flip-Flop (1 bit)
St\!7480 Adder (1 bit)
SN7482 Adder (2 bit)
SN7483 Adder (4 bit)
SN7485 Compare (4 bit)
SN7486 XOR (2 input)
SN7491 Sh ift-Reg i ster (8 bit)
SN74S133 NAND (13 input)
SN74150 Multiplexor (16 to 1)
SN74151 Multiplexor (8 to 1)
SN74153 Multiplexor (4 to 1)
SN74157 Multiplexor (2 to 1)
SN74161 Counter (4 bit)
SN74174 Register (6 bit)
SN74181 ALU (4 bit)
SN74191 Counter (4 bit)
SN74194 Shift Register (4 bit)
SN74260 NOR (5 input)
SN74276 JK Flip-Flop (1 bit)

168

Sandia Cell Entries in the Module Database

Package Function

ADDl Adder (1 bit - hand designed)
ADD4 Adder (4 bit - hand designed)
5Cl120 NOR (2 input)
5Cl130 NOR (3 input)
5C 1140 NOR (4 input)
5C1220 NAND (2 input)
5C1230 NAND (3 input)
5C1240 NAND (4 input)
5C1310 NOT
5C1330 Multiplexor (2 to 1)
5C1350 Multiplexor (3 to 1 - unencoded select)
5C1420 R5 Flip-Flop (1 bit)
5C1430 Beginning Counter (1 bit)
5C1440 Middle Counter (1 bit)
5C1450 Ending Counter (1 bit)
5C1460 D Flip-Flop (1 bit)
5C1480 D Flip-Flop (1 bit)
5C1490 D Flip-Flop (1 bit)
5C1520 NOT
5C162"0 AND (2 input)
5C1630
5C1640

AND
AND -

(
(

3 input)
4 input)

5C1650 AND (5 input)
5C1720 OR (2 input)
5C 1730 OR (3 input)
5C1800 Multiplexor (4 to 1 - unencoded select)
5C1820 D Flip-Flop (1 bit)
5C2310 XOR
5C2320 XOR

169

References

[Barbacci 73]

[Barbacci 79]

[Barbacci 81]

[Bevington 69]

[Blakeslee 75]

[Clark 67]

[Cloutier 80]

[Ernst 69]

[Hafer 77]

[Hafer 78]

[Hafer 79]

[Jensen 74]

M. R. Barbacci.
Automated Exploration of the Design Space For Register Transfer (RT)

Systems.
PhD thesis, Carnegie-Mellon University, November, 1973.

M. R. Barbacci, G. E. Barnes, R. G. Cattell, D. P. Siewiorek.
The Symbolic Manipulation of Computer Descriptions: ISPS Computer

Description Language
Carnegie-Mellon University, 1979.

M. R. Barbacci.
Instruction Set Processor Specifications (ISPS): The Notation and its

Applications.
IEEE Computer Society, Transactions on Computers C-30(1), January,

1981.

P. R. Bevington.
Data Reduction and Error Analysis for the Physical Sciences.
McGraw-Hili Book Company, 1969.

T. R. Blakeslee.
Digital Design with Standard MSI and LSI.
John Wiley & Sons, 1975.

W. A. Clark.

Macromodular Computer Systems.

In AFIPS Conference Proceedings 30, pages 335-402. SJCC, Atlantic City,

N.J,1967.

R. J. Cloutier.

Control Allocation: the Automated Design of Digital Controllers.

Master's thesis, Carnegie-Mellon University, April, 1980.

G. W. Ernst and A. Newell.

GPS: A Case Study in Generality and Problem Solving.
Academic Press, 1969.

L. J. Hafer.

Data-Memory Allocation in the Distributed Logic Design Style.

Master's thesis, Carnegie-Mellon University, December, 1977.

L. J. Hafer and A. C. Parker.

Register-Transfer Level Automatic Digital Design: The Allocation Process.

In Proceedings of the 15th Design Automation Conference. IEEE,1978.

L. J. Hafer.

Micro-operation Documentation.
Technical Report, Carnegie-Mellon University, 1979.

K. Jensen and N. Wirth.
PASCAL User Manual and Report.
Springer-Verlag, 1974.

170

[Johannsen 79] D. Johannsen.
Bristle Blocks: A Silicon Compiler.
In 16th Design Automation Conference Proceedings, pages 310-313. IEEE

Computer Society, IEEE, 1979.

[Kim 79] J. H. Kim.
Issues in Translation of High Level Abstract Designs to IC Layout.
Master's thesis, Carnegie-Mellon University, November, 1979.

[Lawson 78] G. L. Lawson.
Design Style Selector, An Automated Computer Program Implementation.
Master's thesis, Carnegie-Mellon University, August, 1978.

[Leive 77] G. W. Leive.
The Binding of Modules to Abstract Digital Hardware Descriptions.
PhD Thesis Proposal, Electrical Engineering Department, Carnegie-Mellon

University, 1977.

[Leive 79] G. W. Leive and D. E. Thomas.
The eMU Design System, Module Database - User's Guide
Carnegie-Mellon University, 1979.

[Leive 80] G. W. Leive.
The SYNNER's Guide
First edition, Carnegie-Mellon University, 1980.

[Marwedel 79] P. Marwedel.
The MIMOLA Design System: Detailed Description of the Software System.
In 16th Design Automation Conference Proceedings, pages 59-63. IEEE

Computer Society, IEEE, 1979.

[McFarland 79]· M. C. McFarland.
Global Transformations on Abstract Hardware Descriptions: A Formal

Approach.
PhD Thesis Proposal, Electrical Engineering Department, October 1979.

[Nagle 80] A. W. Nagle.
Automated Design of Digital-System Control Sequencers from Register

Transfer Specifications.
PhD thesis, Carnegie-Mellon University, 1980.

[Parker 79] A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L.Hafer, G.Leive, J.Kim.
The CMU Design Automation System: An Example of Automated Data Path

Design.
In 16th Design Automation Conference Proceedings, pages 73-80. IEEE

Computer Society, IEEE, 1979.

[Rege 74] S. L. Rege.
Designing Variable Data Format Modules With Cost-Performance Tradeoffs.
PhD thesis, Carnegie-Mellon University, August, 1974.

[Sandia 78] Sandia Staff.
Standard Cell User's Guide.
Sandia Laboratories, 1978.

171

[Siewiorek 76] D. P. Siewiorek, M. R. Barbacci.
The CMU RTCAD System: An Innovative Apprc;>ach to Computer Aided

Design. .
In AFIPS Conference Proceedings. vol. 45, pages 643-655. AFIPS, 1976.

[Snow 78] E. A. Snow.
Automation of Module Set Independent Register-Transfer Level Design.
PhD thesis, Carnegie-Mellon University, April, 1978.

[Sussman 79] G. J. Sussman, J. Holloway, and T. F. Knight, Jr.
Computer Aided Evolutionary Design for Digital integrated Systems.
Technical Report AI Memo No. 526, Massachusetts Institute of Technology,

May, 1979.

[Thomas 81] D. E. Thomas and D. P. Siewiorek.
Measuring Designer Performance to Verify Design Automation Systems.
IEEE Transactions on Computers, 1981.

[Weiss 79] R. Weiss.
DataBook Editor.
Project Report, Electrical Engineering Department, Carnegie-Mellon

University, 1979.

[Wiederhold 77] G. Wiederhold.
Database Design.
McGraw-Hil.! Book Company, 1977.

[Zimmermann 79] G. Zimmermann.
The MIMOLA Design System: A Computer Aided Digital Processor Design

Method.
In 16th Design Automation Conference Proceedings, pages 53-58. IEEE

Computer Society, IEEE, 1979.

	Gary's Thesis
	Gary's Thesis 2

